Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Accidental double zoom reveals millimeter waves around supermassive black hole

An international team of astronomers led by Matus Rybak (Leiden University, Netherlands) has proven, thanks to accidental double zoom, that millimeter radiation is generated close to the core of a supermassive black hole. Their findings have been accepted for publication in the journal Astronomy & Astrophysics and are available on the arXiv preprint server.

A universal rhythm guides how we speak: Global analysis reveals 1.6-second ‘intonation units’

Have you ever noticed that a natural conversation flows like a dance—pauses, emphases, and turns arriving just in time? A new study has discovered that this isn’t just intuition; there is a biological rhythm embedded in our speech.

Sleeping flies that still manage to escape shed light on inhibitory neuronal networks

Flies too need their sleep. In order to be able to react to dangers, however, they must not completely phase out the environment. Researchers at Charité–Universitätsmedizin Berlin have now deciphered how the animal’s brain produces this state. As they describe in the journal Nature, the fly brain filters out visual information rhythmically during sleep—so that strong visual stimuli can still wake the animal.

Periods of rest and sleep are vital—presumably for all animals.

“Sleep is essential for physical regeneration, and in humans and many animals it is also fundamental for memory formation,” explains Prof. David Owald, a scientist at Charité’s Institute of Neurophysiology and leader of the recently published study. It was previously unclear how an organism reduces its response to stimuli sufficiently to be able to regenerate, while still remaining alert enough to respond to external dangers.

Growing ultrathin semiconductors directly on electronics could eliminate a fragile manufacturing step

A team of materials scientists at Rice University has developed a new way to grow ultrathin semiconductors directly onto electronic components.

The method, described in a study published in ACS Applied Electronic Materials, could help streamline the integration of two-dimensional materials into next-generation electronics, neuromorphic computing and other technologies demanding ultrathin high-speed semiconductors.

The researchers used (CVD) to grow tungsten diselenide, a 2D semiconductor, directly onto patterned gold electrodes. They next demonstrated the approach by building a functional, proof-of-concept transistor. Unlike conventional techniques that require transferring fragile 2D films from one surface to another, the Rice team’s method eliminates the transfer process entirely.

Why do some people age faster than others? Study identifies genes at play

It’s a fact of life: Some people age better than others. Some ease into their 90s with mind and body intact, while others battle diabetes, Alzheimer’s or mobility issues decades earlier. Some can withstand a bad fall or bout of the flu with ease, while others never leave the hospital again.

New University of Colorado Boulder-led research, published in Nature Genetics, sheds light on why that is.

In it, an international team of co-authors identifies more than 400 genes associated with accelerated aging across seven different sub-types. The study reveals that different groups of genes underlie different kinds of disordered aging, a.k.a. frailty, ranging from cognitive decline to mobility issues to social isolation.

Ultrabroadband laser ‘comb’ can enable rapid identification of chemicals with extreme precision

Optical frequency combs are specially designed lasers that act like rulers to accurately and rapidly measure specific frequencies of light. They can be used to detect and identify chemicals and pollutants with extremely high precision.

Weak points in diamond fusion fuel capsules identified

Scientists at the University of California San Diego have uncovered how diamond—the material used to encase fuel for fusion experiments at the National Ignition Facility (NIF) in Lawrence Livermore National Laboratory—can develop tiny structural flaws that may limit fusion performance.

At the NIF, powerful lasers compress diamond capsules filled with deuterium and tritium to the extreme pressures needed for . This process must be perfectly symmetrical to achieve maximum energy output.

By using a high-power pulsed laser to simulate these extreme conditions, researchers found that diamonds can form a series of defects, ranging from subtle crystal distortions to narrow zones of complete disorder, or amorphization. These imperfections can disrupt the implosion symmetry, which in turn can reduce energy yield or even prevent ignition.

New model describes result of non-reciprocal interactions between two non-linear molecules

Asymmetric interactions between different species of molecules have previously been demonstrated to result in self-organized patterns and functions. If one species A is attracted to B, but in turn, B is repelled by A, run-and-chase dynamic emerges.

Optical resonator enables a new kind of microscope for ultra-sensitive samples

Everyone who ever took a photo knows the problem: if you want a detailed image, you need a lot of light. In microscopy, however, too much light is often harmful to the sample—for example, when imaging sensitive biological structures or investigating quantum particles. The aim is therefore to gather as much information as possible about the object under observation with a given amount of light.

/* */