Toggle light / dark theme

The central question in the ongoing hunt for dark matter is: what is it made of? One possible answer is that dark matter consists of particles known as axions. A team of astrophysicists, led by researchers from the universities of Amsterdam and Princeton, has now shown that if dark matter consists of axions, it may reveal itself in the form of a subtle additional glow coming from pulsating stars. Their work is published in the journal Physical Review Letters.

Dark matter may be the most sought-for constituent of our universe. Surprisingly, this mysterious form of matter, that physicist and astronomers so far have not been able to detect, is assumed to make up an enormous part of what is out there.

No less than 85% of matter in the universe is suspected to be “dark,” presently only noticeable through the gravitational pull it exerts on other astronomical objects. Understandably, scientists want more. They want to really see dark matter—or at the very least, detect its presence directly, not just infer it from gravitational effects. And, of course: they want to know what it is.

Japanese scientist Kikunae Ikeda first proposed umami as a basic taste—in addition to sweet, sour, salty and bitter—in the early 1900s. About eight decades later, the scientific community officially agreed with him.

Now, scientists led by researchers at the USC Dornsife College of Letters, Arts and Sciences have evidence of a sixth basic .

In research published in Nature Communications, USC Dornsife neuroscientist Emily Liman and her team found that the tongue responds to through the same that signals sour taste.

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature.

This new work on “assembly ,” published today in Nature, represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe. The paper is titled “Assembly Theory Explains and Quantifies Selection and Evolution.”

This research builds on the team’s previous work developing assembly theory as an empirically validated approach to life detection, with implications for the search for and efforts to evolve new life forms in the laboratory.

Artificial intelligence is changing health care. It promises better diagnoses and fewer mistakes and all in less time. While some associate AI with a frightening dystopian future, many doctors see it as a source of support.

To help them care for patients, doctors are programming apps and supplying AI with data. At Berlin’s Charité hospital, Professor Surjo Soekadar is researching how neurotechnology might support paralysis patients in their everyday lives — for example, via assistance systems that are controlled via their thoughts.

This could offer hope to people like Guido Schule and Anne Nitzer had a stroke shortly after the birth of her second child and has been unable to move or speak since then — even though she is fully conscious.

At Vienna General Hospital (AKH) Professor Ursula Schmidt-Erfurth has already developed an AI-based diagnostic tool that has been licensed for use. Nowadays, she is researching how AI could improve both the diagnosis and the treatment of age-related macular degeneration (AMD). This chronic eye disease can lead to loss of vision — even with treatment. This is a fate that Oskar Zlamala could face. But since the retiree began treatment at the AKH Vienna, he is hoping that it might be possible to halt the progression of his illness.

This is a sci-fi documentary, looking at the 100 years it will take a nuclear fusion spacecraft to travel to Proxima Centauri b. The closest habitable planet to Earth, with a distance of 4.24 light years.

A journey venturing far beyond Earth’s solar system, showing the future science of space travel, exploration, and future space technology.

Personal inspiration in creating this video comes from: the movie Interstellar, The Expanse TV show, and Carl Sagan’s Cosmos TV show.

Other topics in the video include: the population growth over the 100 year timelapse journey to Proxima Centauri b, how bacteria evolves in a closed loop system, the design of the spaceship habitat ring, the rotations per minute needed to generate 1-g of artificial gravity, the conservation of angular momentum in space, the living conditions on Proxima Centauri b (the higher gravity, and the red light), and time dilation is explained (how many extra days will pass on Earth when the spaceship arrives at the destination planet – just like the movie Interstellar).

In September 2020 we sat down with Robert Sapolsky, Stanford professor and the author of Human Behavioral Biology lectures (https://youtu.be/NNnIGh9g6fA) to discuss if it’s possible for our society to reconcile our understanding of justice with scientific understanding of human behaviour.

Why do humans, most likely, have no free will? How does that link to depression and other psychiatric disorders? Can people accept the idea that there is no free will and start using, what science tells us about the reasons behind our behaviour, as a basis for making sense of justice and morality? If yes, can we even imagine what such society would look like?

This is a third interview with Robert. The first (https://youtu.be/VrQkl7PaA1s) and the second (https://youtu.be/yp9HE5xfojY) talks are available on our channel.

According to Fioretto et al. [9], whole organ pancreas transplantation is a viable therapeutic option, since it improves the patient’s quality of life and promotes regression of some late complications associated with T1D. However, this procedure constitutes a major surgical intervention, which requires a strict immunosuppressive regimen and heavily depends on properly functioning of the donor pancreas for a successful treatment, being recommended only for patients with brittle/labile T1D who also need a kidney transplant [10]. Pancreatic islets transplantation, introduced in Brazil by our research group [11, 12], has been shown to be a promising alternative to whole organ pancreas transplantation, since it is a simpler and less invasive procedure. According to Hering et al. [13], transplantation of pancreatic islets is a safe and efficient treatment option for T1D patients with hypoglycemia. Nevertheless, there are still some factors that limit this procedure, such as the low availability of pancreas donors and the requirement for constant patient immunosuppression [10, 14].

Chronic usage of immunosuppressant medication becomes necessary for immunological acceptance of the islet allograft; however, this regimen is associated with various side effects, such as oral sores, gastrointestinal diseases, hypertension, dyslipidemia, anemia, increased infection susceptibility, cancer and systemic toxicity [15]. Therefore, encapsulation of pancreatic islets has emerged as a promising strategy to avoid the need for these immunosuppressive drugs. Production of semipermeable microcapsules for biological application, containing cells or proteins, was initially suggested in the 90’s [16], but considerable progress has been achieved in the field since then, with a major increase in application possibilities, including as an alternative for T1D treatment.

To avoid using steroid-based agents that damage β-cells and are known to be diabetogenic or induce peripheral insulin resistance, a glucocorticoid-free immunosuppressive protocol was developed by the Shapiro’s Group [17], for usage in islet transplantation trials. This protocol includes sirolimus, low dosage of tacrolimus and a monoclonal antibody against the interleukin-2 receptor (daclizumab). Their findings, in a study with T1D patients, indicate that islet transplantation alone is associated with minimal risks for the patient and results in good metabolic control, with normalization of glycated hemoglobin values and restricted requirement for exogenous insulin [17]. This protocol, known as the Edmonton Protocol, was considered as a breakthrough, becoming the standard procedure for islet transplantation, constituting a promising step toward the development of a cure for T1D [18]. However, the standard procedure for pancreatic islets transplantation is based on isolation and purification of islet cells from deceased donors, a process that requires two to four donors per patient, since the efficiency of islet isolation is well below 100% and, additionally, only about 50% of the implanted islets survive after transplantation [19]. In addition, several factors interfere with the viability of the graft after transplantation, such as quality of the donated organ, viability and functionality of the purified islets and the patient’s own immune response [20]. Although many advances have been reached in the field, the need for a large number of viable islets, along with the low availability of donors, is still an important factor that compromise the viability of this methodology.