Menu

Blog

Page 2553

Jun 16, 2023

Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo

Posted by in category: neuroscience

Psilocybin is a serotonergic psychedelic with untapped therapeutic potential. There are hints that the use of psychedelics can produce neural adaptations, although the extent and timescale of the impact in a mammalian brain are unknown. In this study, we used chronic two-photon microscopy to image longitudinally the apical dendritic spines of layer 5 pyramidal neurons in the mouse medial frontal cortex. We found that a single dose of psilocybin led to ∼10% increases in spine size and density, driven by an elevated spine formation rate. The structural remodeling occurred quickly within 24 h and was persistent 1 month later. Psilocybin also ameliorated stress-related behavioral deficit and elevated excitatory neurotransmission. Overall, the results demonstrate that psilocybin-evoked synaptic rewiring in the cortex is fast and enduring, potentially providing a structural trace for long-term integration of experiences and lasting beneficial actions.


Psilocybin is a classical psychedelic that shows promise as a treatment for depression. Shao et al. show that psilocybin administration leads to long-lasting modifications to the neural architecture in mice. The increases in the density and strength of neuronal connections may underlie the enduring behavioral effects of the compound.

Jun 15, 2023

Tethering of shattered chromosomal fragments paves way for new cancer therapies

Posted by in categories: biotech/medical, genetics, neuroscience

Healthy cells work hard to maintain the integrity of our DNA, but occasionally, a chromosome can get separated from the others and break apart during cell division. The tiny fragments of DNA then get reassembled in random order in the new cell, sometimes producing cancerous gene mutations.

This chromosomal shattering and rearranging is called “chromothripsis” and occurs in the majority of human cancers, especially cancers of the bones, brain and fatty tissue. Chromothripsis was first described just over a decade ago, but scientists did not understand how the floating pieces of DNA were able to be put back together.

In a study published in Nature, researchers at University of California San Diego have answered this question, discovering that the shattered DNA fragments are actually tethered together. This allows them to travel as one during and be re-encapsulated by one of the new daughter cells, where they are reassembled in a different order.

Jun 15, 2023

Colon Cancer Symptoms | Colorectal Cancer | 10 warning signs of Colon Cancer | Colon Cancer

Posted by in category: biotech/medical

Colon cancer screening | Colonoscopy.

0:00 Introduction.
0:24 What is colon cancer.
0:56 Risk factors of colon cancer.
1:47 Signs and symptoms of colon cancer.
4:36 Late stage colon cancer Signs and symptoms.
5:03 How to prevent colorectal cancer.

Continue reading “Colon Cancer Symptoms | Colorectal Cancer | 10 warning signs of Colon Cancer | Colon Cancer” »

Jun 15, 2023

Cloaking Technology: How Close Are We to Making Something Invisible?

Posted by in category: futurism

Jun 15, 2023

NASA’s Curiosity rover sends “postcard” showing Mars during different times of the day

Posted by in category: space

Once in the hands of NASA scientists, the photos were turned into panoramic images. Color was also added to the photos, creating what NASA referred to as a “postcard,” and further emphasizing the difference between the two times the photos were taken.

The panoramic postcard shows a number of Mars landmarks, including “Marker Band Valley,” where Curiosity once found evidence that there may have been a lake on the site, and two hills named “Bolivar” and “Deepdale.” At the edge of the photo is the rim of the Gale Crater, which Curiosity is currently exploring. Because the photograph was taken on a clear day, Curiosity’s image even shows a mountain that is 54 miles from the edge of the crater.

Jun 15, 2023

Tiny nanopores can contribute to faster identification of diseases

Posted by in categories: biotech/medical, chemistry, nanotechnology

In a collaboration with Groningen University, Professor Jørgen Kjems and his research group at Aarhus University have achieved a remarkable breakthrough in developing tiny nano-sized pores that can contribute to better possibilities for, among other things, detecting diseases at an earlier stage.

Their work, recently published in the journal ACS Nano, shows a new innovative method for finding specific proteins in complex biological fluids, such as blood, without having to label the proteins chemically. The research is an important milestone in , and could revolutionize medical diagnostics.

Nanopores are tiny channels formed in materials, that can be used as sensors. The researchers, led by Jørgen Kjems and Giovanni Maglia (Groningen Univ.), have taken this a step further by developing a special type of called ClyA with scanner molecules, called nanobodies, attached to it.

Jun 15, 2023

Scientists have identified anti-aging drugs using AI technology

Posted by in categories: biotech/medical, chemistry, information science, life extension, robotics/AI

Artificial intelligence (AI) and its latest contribution to the development of anti-aging drugs has paved the way for breakthrough discoveries in modern medicine.

Researchers, using AI technology, have successfully identified three chemicals that specifically target malfunctioning cells, believed to be associated with certain cancers and Alzheimer’s disease.

A group of scientists from the University of Edinburgh developed an AI algorithm to screen a collection of over 4,300 chemical compounds.

Jun 15, 2023

The subsurface ocean of Saturn’s moon- Enceladus, contains a key building block for life

Posted by in category: space

Key building block for life found at Saturn’s moon Enceladus.

Jun 15, 2023

A Chip Off the Old Eye: Device Mimics Human Vision and Memory

Posted by in categories: innovation, robotics/AI

The team’s research demonstrates a working device that captures, processes and stores visual information. With precise engineering of the doped indium oxide, the device mimics a human eye’s ability to capture light, pre-packages and transmits information like an optical nerve, and stores and classifies it in a memory system like the way our brains can.


Summary: Researchers developed a single-chip device that mimics the human eye’s capacity to capture, process, and store visual data.

This groundbreaking innovation, fueled by a thin layer of doped indium oxide, could be a significant leap towards applications like self-driving cars that require quick, complex decision-making abilities. Unlike traditional systems that need external, energy-intensive computation, this device encapsulates sensing, information processing, and memory retention in one compact unit.

Continue reading “A Chip Off the Old Eye: Device Mimics Human Vision and Memory” »

Jun 15, 2023

Bioprinting personalized tissues and organs within the body: A breakthrough in regenerative medicine

Posted by in categories: 3D printing, bioprinting, biotech/medical, chemistry, cyborgs, life extension

In situ bioprinting, which involves 3D printing biocompatible structures and tissues directly within the body, has seen steady progress over the past few years. In a recent study, a team of researchers developed a handheld bioprinter that addresses key limitations of previous designs, i.e., the ability to print multiple materials and control the physicochemical properties of printed tissues. This device will pave the way for a wide variety of applications in regenerative medicine, drug development and testing, and custom orthotics and prosthetics.

The emergence of has resulted in substantial improvements in the lives of patients worldwide through the replacement, repair, or regeneration of damaged tissues and organs. It is a promising solution to challenges such as the lack of organ donors or transplantation-associated risks. One of the major advancements in regenerative medicine is on-site (or “in situ”) bioprinting, an extension of 3D , which is used to directly synthesize tissues and organs within the human body. It shows great potential in facilitating the repair and regeneration of defective tissues and organs.

Although significant progress has been made in this field, currently used in situ bioprinting technologies are not devoid of limitations. For instance, certain devices are only compatible with specific types of bioink, while others can only create small patches of tissue at a time. Moreover, their designs are usually complex, making them unaffordable and restricting their applications.