Toggle light / dark theme

I’ve posted a number of times about artificial intelligence, mind uploading, and various related topics. There are a number of things that can come up in the resulting discussions, one of them being Kurt Gödel’s incompleteness theorems.

The typical line of arguments goes something like this: Gödel implies that there are solutions that no algorithmic system can accomplish but that humans can accomplish, therefore the computational theory of mind is wrong, artificial general intelligence is impossible, and animal, or at least human minds require some as of yet unknown physics, most likely having something to do with the quantum wave function collapse (since that remains an intractable mystery in physics).

This idea was made popular by authors like Roger Penrose, a mathematician and theoretical physicist, and Stuart Hameroff, an anesthesiologist. But it follows earlier speculations from philosopher J.R. Lucas, and from Gödel himself, although Gödel was far more cautious in his views than the later writers.

In recent years, engineers and material scientists have been trying to create increasingly advanced battery technologies that are charged faster, last longer, and can store more energy. These batteries will ultimately play a crucial role in the advancement of the electronics and energy sector, powering the wide range of portable devices on the market, as well as electric vehicles.

Lithium-ion batteries (LiBs) are currently the most widespread batteries worldwide, powering most electronics we use every day. Identifying scalable methods to increase the speed at which these batteries charge is thus one of the primary goals in the energy field, as it would not require switching to entirely new battery compositions.

Researchers at Huazhong University of Technology in China recently introduced a new strategy to develop fast-charging LiBs containing a graphite-based material. Their proposed battery design, outlined in a paper published in Nature Energy, was found to successfully speed up the charging time of LiBs, while also allowing them to retain much of their capacity even after they are charged thousands of times.

To try everything Brilliant has to offer—free—for a full 30 days, visit http://brilliant.org/ArtemKirsanov/
The first 200 of you will get 20% off Brilliant’s annual premium subscription.

My name is Artem, I’m a computational neuroscience student and researcher. In this video we discuss the Tolman-Eichenbaum Machine – a computational model of a hippocampal formation, which unifies memory and spatial navigation under a common framework.

Patreon: https://www.patreon.com/artemkirsanov.
Twitter: https://twitter.com/ArtemKRSV

OUTLINE:

Since I like AI and I’m possibly going into Cyber Security. This is a great use for AI. Catching cyber threats in real time. It’s ML of course.


Powered by artificial intelligence and machine learning, Palo Alto Networks Zero Trust approach unifies network security for companies so they can focus on what they do best.

For IT leaders, building a safe and secure network used to be much easier. Before companies had multiple locations due to hybrid work, data was stored on-site, and employees only accessed it from those locations. Nowadays, with workers logging in remotely, and from a variety of devices, securing data has become significantly more complex. Additionally, many organizations have taken their networks and applications to the cloud, further complicating their security architectures and putting them at risk of cyberattacks.

A team of chemists at McGill University, working with a colleague from Charité-Universitätsmedizin, in Germany, has uncovered part of the process used by mussels to bind to rocks and to quickly release from them when conditions warrant.

In their project, reported in the journal Science, the group studied the interface between mussel and the bundle of filaments that use to anchor themselves to rocks and other objects. Guoqing Pan and Bin Li, with Jiangsu University and Soochow University, both in China, have published a Perspective article in the same journal issue outlining the work done by the team on this new effort.

Mussels are bivalve mollusks that live in both fresh and saltwater environments. They have hinged shells that are joined by a ligament. Muscles ensure a tight seal when the shell is closed. Mussels use byssus threads (known commonly as a beard) to attach themselves to such as rocks.

Full episode with Joscha Bach (Jun 2020): https://www.youtube.com/watch?v=P-2P3MSZrBM
Clips channel (Lex Clips): https://www.youtube.com/lexclips.
Main channel (Lex Fridman): https://www.youtube.com/lexfridman.
(more links below)

Podcast full episodes playlist:

Podcasts clips playlist:

Podcast website: