Toggle light / dark theme

Developing brains become shaped by the sights, sounds, and experiences of early life. The brain’s circuits grow more stable as we age. However, some experiences later in life open up opportunities for these circuits to be rapidly rewired. New research from Cold Spring Harbor Laboratory Associate Professor Stephen Shea helps explain how the brain adapts during a critical period of adulthood: the time when new mothers learn to care for their young.

Shea’s work in mice shows how this is disrupted when a small set of neurons lack a protein called MECP2. In humans, MECP2 dysfunction causes the rare neurodevelopmental disorder Rett syndrome. Shea’s findings could point researchers toward the brain circuits involved in Rett syndrome and potential treatment strategies. His research could also have implications for more common neurological conditions.

Shea explains, “It’s not lost on us that Rett syndrome patients have difficulty interpreting and producing language. Difficulties with communicating are widespread in . One of the reasons we study Rett syndrome is that this may be a valuable model for other forms of autism.”

Central learning and memory hubs change in response to sex hormones. A new study in Nature Mental Health by Rachel Zsido and Julia Sacher of the Max Planck Institute for Human Cognitive and Brain Sciences and the University Clinic in Leipzig, Germany, links rhythmic oscillations in ovarian hormone levels in women during the menstrual cycle to changes in brain structure.

Ovarian hormones have significant effects on the brain, and early menopause may be associated with an increased risk of accelerated brain aging and dementia later in life. However, the effects of ovarian hormone fluctuations on earlier in life are less defined. In their current study, Zsido and Sacher show that fluctuations in ovarian hormones affect structural plasticity in key brain regions during the reproductive years.

To do this, the scientists collected from 27 female study participants, used ultrasound to track follicle growth in the ovaries to pinpoint ovulation timing, and utilized ultra-high field 7 Tesla MRI to zoom into subregions of the medial temporal lobe and hippocampus. That’s because these regions are dense with sex hormone receptors and are critical for cognitive function, such as episodic memory.

Year 2022 face_with_colon_three


When the team fired their ultra-fast laser at a graphene wire strung between two gold electrodes, it produced two different kinds of currents. Some of the electrons excited by the light continued moving in a particular direction once the light was switched off, while others were transient and were only in motion while the light was on. The researchers found that they could control the type of current created by altering the shape of their laser pulses, which was then used as the basis of their logic gate.

Logic gates work by taking two inputs—either 1 or 0—processing them, and providing a single output. The exact processing rules depend on the kind of logic gate implementing them, but for example, an AND gate only outputs a 1 if both its inputs are 1, otherwise it outputs a 0.

In the researchers’ new scheme, two synchronized lasers are used to create bursts of either the transient or permanent currents, which act as the inputs to the logic gate. These currents can either add up or cancel each other to provide the equivalent of a 1 or 0 as an output.

VIEW NOW: https://ow.ly/GMX050PMTMH

In this webinar, three experts will discuss how Precision NanoSystems’ modular microfluidic platform technologies and analytics can help scientists successfully design, develop, test, and scale-up promising mRNA-LNP vaccines and therapeutics from concept to clinic. Don’t miss this webinar, now available on demand.


Alreadyed? Click Here

Nucleic acids (e.g., siRNA, mRNA and saRNA) can be designed and formulated to silence, express, and edit specific genes providing a flexible and powerful approach to preventing and treating diseases. The recent commercialization and widespread distribution of COVID-19 mRNA vaccines has exemplified the massive potential of this new class of genomic medicines and vaccines to effectively thwart emerging viral threats and treat a wide range of challenging diseases. Part of developing a successful mRNA therapeutic or vaccine is choosing a delivery mechanism that protects the nucleic acids on the way to their target tissue. Encapsulating mRNA in lipid nanoparticles has proven to be one of the best vehicles for overcoming extracellular and intracellular barriers and safely delivering the treatment. Several mRNA-LNP formulations that target things like viral infections and cancers are being evaluated clinically.

In this webinar, three experts will discuss how Precision Nanosystems’ modular microfluidic platform technologies and analytics can help scientists successfully design, develop, test, and scale-up promising mRNA-LNP vaccines and therapeutics from concept to clinic. They will provide an overview of Precision NanoSystem’s Biopharma Services, and share examples from internal R&D work that demonstrate the versatility of the genetic medicine toolbox for rapidly developing RNA-LNP vaccines. You’ll also learn about Precision NanoSystem’s BioAssay services and the capabilities that are available to facilitate and accelerate drug development projects.

Researchers at Columbia University have developed a probiotic-guided chimeric antigen receptor (CAR)-T platform that uses engineered bacteria to infiltrate and produce synthetic antigen targets, enabling CAR-T cells to find, identify, and destroy tumor cells in situ. The results of in vivo preclinical tests suggest that the combined ProCAR cell therapy platform could expand the scope of CAR-T cell therapy to include difficult-to-target solid tumors.

Tal Danino, PhD, and Rosa L. Vincent, PhD, at Columbia University’s department of biomedical engineering, and colleagues, reported on their developments in Science, in a paper titled “Probiotic-guided CAR-T cells for solid tumor targeting,” in which they concluded, “These findings highlight the potential of the ProCAR platform to address the roadblock of identifying suitable CAR targets by providing an antigen that is orthogonal to both healthy tissue and tumor genetics … Overall, combining the advantages of tumor-homing bacteria and CAR-T cells provides a new strategy for tumor recognition and, in turn, builds the foundation for engineered communities of living therapies.”

Immunotherapies using CAR-T cells have proven successful in treating some types of blood cancers, but their efficacy against solid tumors remains elusive. A key challenge facing tumor-antigen targeting immunotherapies like CAR-T is the identification of suitable targets that are specifically and uniformly expressed on solid tumors, the authors noted. “A key challenge of antigen-targeted cell therapies relates to the expression patterns of the antigen itself, which makes the identification of optimal targets for solid tumor cell therapies an obstacle for the development of new CARs.” Solid tumors express heterogeneous and nonspecific antigens and are poorly infiltrated by T cells. As a result, the approach carries a high risk of fatal on-target, off-tumor toxicity, wherein CAR-T cells attack the targeted antigen on healthy vital tissues with potentially fatal effects.

In the realm of healthcare, change has always been met with resistance. It took considerable time for the medical community to accept the stethoscope as a valuable tool in patient care. Similarly, it will take a while for Artificial Intelligence (AI) to be recognized as a full-fledged health tool, despite its immense potential to revolutionize the healthcare industry. However, when A.I. eventually takes its rightful place in healthcare, it will displace the stethoscope as its symbol. Let’s dive into how AI is poised to transform the way we approach healthcare.

Inflammatory bowel disease (IBD) is a major global health concern, with an estimated 1.6 million cases in the US alone. While there are many treatments available, they are often ineffective and can cause harmful side effects. A major reason clinically successful IBD therapies remain elusive is because current model systems cannot replicate key mechanistic aspects of the epithelial inflammatory response in humans.

In this webinar brought to you by Altis Biosystems, Bryan McQueen will describe the development of a new stem-cell derived intestinal epithelium model system for testing IBD therapeutic efficacy. Using this model system, researchers developed a suite of assays to probe epithelial barrier disruption, cytotoxicity, and pro-inflammatory cytokine release in response to the activation of prototypical IBD-associated cellular pathways.

Ultracapacitors are awesome. But could they viably replace batteries in future electric vehicles?

Ultracapacitors have significant advantages over batteries, after all, they are much lighter, faster to charge, safer, and non-toxic. However, there are some areas where batteries wipe the floor with them, at least for now.

With recent acquisitions of ultracapacitor manufacturers by the likes of Tesla, ultracapacitors could be on the verge of ousting batteries as the go-to power source for electric cars.

In a move that echoes a sci-fi series, researchers have developed a super-small material that was able to not only stimulate nerves in rodents, but reconnect them as well. The finding could lead to injectable particles that take the place of larger implants.

In creating the particles, researchers at Rice University started with two layers of a metallic glass alloy called Metglas and wedged a piezoelectric layer of lead zirconium titanate in between them. Piezoelectric materials generate electricity when they have mechanical forces applied to them. Metglas is a magnetostrictive material, which means it changes its shape when it has a magnetic field applied to it. In this case, the change in shape of the Metglas in the presence of magnetic pulses caused the piezoelectric material inside to generate an electrical signal. Materials that do this are known as magnetoelectric.

“We asked, ‘Can we create a material that can be like dust or is so small that by placing just a sprinkle of it inside the body you’d be able to stimulate the brain or nervous system?’” said lead author Joshua Chen, a Rice doctoral alumnus. “With that question in mind, we thought that magnetoelectric materials were ideal candidates for use in neurostimulation. They respond to magnetic fields, which easily penetrate into the body, and convert them into electric fields – a language our nervous system already uses to relay information.”