Toggle light / dark theme

Hussam Amrouch has developed an AI-ready architecture that is twice as powerful as comparable in-memory computing approaches. As reported in the journal Nature, the professor at the Technical University of Munich (TUM) applies a new computational paradigm using special circuits known as ferroelectric field effect transistors (FeFETs). Within a few years, this could prove useful for generative AI, deep learning algorithms, and robotic applications.

The basic idea is simple: unlike previous chips, where only calculations were carried out on transistors, they are now the location of data storage as well. That saves time and energy.

“As a result, the performance of the chips is also boosted,” says Hussam Amrouch, a professor of AI processor design at the Technical University of Munich (TUM).

The new research, part of the NIH BRAIN Initiative, paves the way toward treating, preventing, and curing brain disorders.

Salk Institute researchers, as part of a larger collaboration with research teams around the world, analyzed more than half a million brain cells from three human brains to assemble an atlas of hundreds of cell types that make up a human brain in unprecedented detail.

The research, published in a special issue of the journal Science on October 13, 2023, is the first time that techniques to identify brain cell subtypes originally developed and applied in mice have been applied to human brains.

Complimentary approaches — “HighLight” and “Tailors and Swiftiles” — could boost the performance of demanding machine-learning tasks.

Researchers from MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

New research offers a theory on how gold, platinum, and other precious metals found their way to shallow pockets within Earth’s mantle.

Scientists at Yale and the Southwest Research Institute (SwRI) say they’ve hit the jackpot with some valuable new information about the story of gold.

It’s a story that begins with violent collisions of large objects in space, continues in a half-melted region of Earth’s mantle, and ends with precious metals finding an unlikely resting spot much closer to the planet’s surface than scientists would have predicted.

The detection of ammonia isotopologues in a brown dwarf by the James Webb Space Telescope.

The James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.

Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements.

Quantum technology’s future rests on the exploitation of fascinating quantum mechanics concepts — such as high-dimensional quantum states. Think of these as states basic ingredients of quantum information science and quantum tech. To manipulate these states, scientists have turned to light, specifically a property called orbital angular momentum (OAM), which deals with how light twists and turns in space. Here’s a catch: making super bright single photons with OAM in a deterministic fashion has been a tough nut to crack.

Quantum Dots: Bridging Technologies

Researchers at Auburn University have achieved a groundbreaking discovery, illuminating the process by which brain cells efficiently replace older proteins. This process is essential for maintaining effective neural communication and optimal cognitive function.

The findings were published on November 6 in the prestigious journal, Frontiers in Cell Development and Biology. The study, entitled “Recently Recycled Synaptic Vesicles Use Multi-Cytoskeletal Transport and Differential Presynaptic Capture Probability to Establish a Retrograde Net Flux During ISVE in Central Neurons,” explains the transportation and recycling of older proteins in brain cells.

How are planets born? Scientists have long proposed that ice-covered pebbles are the seeds of planet formation. These icy solids are thought to drift toward the newborn star from the cold, outer reaches of the disk surrounding it. The theory predicts that, as these pebbles enter the warmer region closer to the star, they would release significant amounts of cold water vapor, delivering both water and solids to nascent planets.

Now, the James Webb Space Telescope.

The James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.

Some researchers see formal specifications as a way for autonomous systems to “explain themselves” to humans. But a new study finds that we aren’t understanding.

As autonomous systems and artificial intelligence become increasingly common in daily life, new methods are emerging to help humans check that these systems are behaving as expected. One method, called formal specifications, uses mathematical formulas that can be translated into natural-language expressions. Some researchers claim that this method can be used to spell out decisions an AI will make in a way that is interpretable to humans.

Research Findings on Interpretability.

Psychiatric patients almost twice as likely to have multiple physical ailments – new study.

A new study, conducted by Anglia Ruskin University (ARU) in collaboration with the University of Cambridge’s Biomedical Research Centre, has revealed significant findings about the physical health of psychiatric patients. This extensive analysis incorporated data from 19 different studies, involving 194,123 psychiatric patients globally, and compared them to 7,660,590 individuals in control groups.

Findings on Multimorbidity.