Toggle light / dark theme

New research on information entropy may offer evidence for the theory that our universe is a sophisticated simulation, with deep implications for various fields, from biology to cosmology.

The simulated universe theory implies that our universe, with all its galaxies, planets and life forms, is a meticulously programmed computer simulation. In this scenario, the physical laws governing our reality are simply algorithms. The experiences we have are generated by the computational processes of an immensely advanced system.

While inherently speculative, the simulated universe theory has gained attention from scientists and philosophers due to its intriguing implications. The idea has made its mark in popular culture, across movies, TV shows, and books – including the 1999 film The Matrix.

The influence of language on human thinking could be stronger than previously assumed. This is the result of a new study by Professor Friedemann Pulvermüller and his team from the Brain Language Laboratory at Freie Universität Berlin. In this study, the researchers examined the modeling of human concept formation and the impact of language mechanisms on the emergence of concepts. The results were recently published in the journal Progress in Neurobiology under the title “Neurobiological Mechanisms for Language, Symbols, and Concepts: Clues from Brain-Constrained Deep Neural Networks” (accessible online at https://www.sciencedirect.com/science/article/pii/S0301008223001120?via%3Dihub).

Children can learn one or more languages with little effort. However, the cognitive activity involved should not be underestimated. Not only do language learners have to learn how to pronounce words, they must also learn how to interlink word forms with content – with concepts such as “coffee,” “drinking,” or “beauty.” But what are the actual mechanisms at work in the network of billions of nerve cells within our brains? And might the learning of some concepts strictly require the presence of language?

In a first, astronomers have discovered the first direct evidence which proves the spinning of a black hole.

The observations gave astronomers new insights regarding enigmatic celestial objects, as the scientists focussed on the supermassive black hole which is present at the centre of the neighbouring Messier 87 (M87) galaxy. The Event Horizon Telescope had imaged the shadow of Messier 87 (M87) galaxy.

Just like other supermassive black holes, M87 also features powerful jets which were launched from the poles almost at the speed of light into intergalactic space.

Stars could be sliced in half by “relativistic blades,” or ultra-powerful outflows of plasma shaped by extremely strong magnetic fields, a wild new study suggests. And these star-splitting blades could explain some of the brightest explosions in the universe.

The study authors, based at the Center for Cosmology and Particle Physics at New York University, outlined their results in a paper published in September to the preprint database arXiv. The study has not yet been peer-reviewed.

Modern computer models—for example for complex, potent AI applications—push traditional digital computer processes to their limits. New types of computing architecture, which emulate the working principles of biological neural networks, hold the promise of faster, more energy-efficient data processing.

A team of researchers has now developed a so-called event-based architecture, using photonic processors with which data are transported and processed by means of light. In a similar way to the brain, this makes possible the continuous adaptation of the connections within the neural network. This changeable connections are the basis for learning processes.

For the purposes of the study, a team working at Collaborative Research Center 1,459 (Intelligent Matter)—headed by physicists Prof. Wolfram Pernice and Prof. Martin Salinga and computer specialist Prof. Benjamin Risse, all from the University of Münster—joined forces with researchers from the Universities of Exeter and Oxford in the UK. The study has been published in the journal Science Advances.

SEOUL, Oct 23 (Reuters) — South Korea’s Samsung SDI (006400.KS) said on Monday it will supply Hyundai Motor (005380.KS) with electric vehicle (EV) batteries for seven years starting 2026, marking the first battery supply deal between the two companies.

“The latest supply deal marks the first ever partnership between Samsung and Hyundai Motor Group in the field of electric vehicle batteries,” Samsung SDI said in a statement.

The battery maker, which supplies to General Motors Co (GM.N), Stellantis (STLAM.MI), and BMW (BMWG.DE) among others, added that it will supply prismatic batteries manufactured at its factory in Hungary for Hyundai Motor’s EVs targeting the European market from 2026 through 2032.

Investigators have discovered a new subtype of interneurons in the retina that allows the eye to see and identify objects better in both the light and in the dark, according to a Northwestern Medicine study published in Nature Communications.

The findings dismantle previous notions about the inner workings of the eye and also have broader implications for informing future neuroscience research, according to Yongling Zhu, Ph.D., assistant professor of Ophthalmology, of Neuroscience and senior author of the study.

In a mammalian eye, the retina converts light into that the then sends to the brain, enabling vision. Before being transmitted to the brain, the electrical signals are processed in a dense, synaptic layer within the retina, which is divided into two halves.