Menu

Blog

Page 24

Oct 22, 2024

‘Squeezing’ Increased Accuracy of Quantum Measurements

Posted by in categories: biotech/medical, quantum physics

Tohoku University’s Dr. Le Bin Ho has explored how quantum squeezing can improve measurement precision in complex quantum systems, with potential applications in quantum sensing, imaging, and radar technologies. These findings may lead to advancements in areas like GPS accuracy and early disease detection through more sensitive biosensors.

Quantum squeezing is a concept in quantum physics where the uncertainty in one aspect of a system is reduced while the uncertainty in another related aspect is increased. Imagine squeezing a round balloon filled with air. In its normal state, the balloon is perfectly spherical. When you squeeze one side, it gets flattened and stretched out in the other direction. This represents what is happening in a squeezed quantum state: you are reducing the uncertainty (or noise) in one quantity, like position, but in doing so, you increase the uncertainty in another quantity, like momentum. However, the total uncertainty remains the same, since you are just redistributing it between the two. Even though the overall uncertainty remains the same, this ‘squeezing’ allows you to measure one of those variables with much greater precision than before.

This technique has already been used to improve the accuracy of measurements in situations where only one variable needs to be precisely measured, such as in improving the precision of atomic clocks. However, using squeezing in cases where multiple factors need to be measured simultaneously, such as an object’s position and momentum, is much more challenging.

Oct 22, 2024

Are telomeres really the key to living longer, youthful lives?

Posted by in categories: biotech/medical, life extension

As Canadians brace for “vitamin D winter”—months when the sun’s angle is too low to produce the vitamin in the skin—a McGill University study explains why vitamin D deficiency early in life is associated with a higher risk of autoimmune diseases.

During childhood, the thymus helps train to distinguish between the body’s own tissues and harmful invaders. A vitamin D deficiency at that stage of life causes the thymus to age more quickly, the researchers discovered.

The study is published in the journal Science Advances.

Oct 22, 2024

Going to concerts helps you live longer, according to research

Posted by in category: futurism

Oh, simple thing, where have you gone? I’m getting old, and I need something to rely on.

Keane.


A study says live gigs could increase well-being by 21 percent.

Continue reading “Going to concerts helps you live longer, according to research” »

Oct 22, 2024

Aging and longevity: Could a cheek swab test predict mortality risk?

Posted by in category: life extension

A simple cheek swab test called CheekAge may be able to predict a person’s increase in mortality risk, according to its developers.

Oct 22, 2024

A Route Toward the Island of Stability

Posted by in categories: chemistry, particle physics

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements.

How and where in the Universe are the chemical elements created? How can we explain their relative abundance? What is the maximum number of protons and neutrons that the nuclear force can bind in a single nucleus? Nuclear physicists and chemists expect to find answers to such questions by creating and studying new elements. But as elements get more and more massive, they become harder and harder to synthesize. The heaviest elements discovered so far were created by bombarding high-atomic-number (high-Z) actinide targets with beams of calcium-48 (48 Ca). This isotope is particularly suited to such experiments because of its peculiar nuclear configuration, in which the number of neutrons and protons are both “magic numbers.” Yet this approach could not produce elements beyond oganesson (proton number, Z = 118).

Oct 22, 2024

Measuring Particle Diffusion with the Countoscope

Posted by in categories: chemistry, particle physics

A new method for studying the behavior of multiparticle systems relies on a simple “head count” of particles in imaginary boxes.

One way to characterize the interactions in a bacterial colony or a polymer mixture is to trace the path of individual particles through the system, but such tracking can become difficult when the particles are indistinguishable. Researchers have developed a new method that extracts particle dynamics from a simple counting of particles in imaginary boxes of adjustable size [1]. They demonstrated this “countoscope” strategy in experiments with small plastic spheres moving around in a liquid. The measured rate of diffusion was different for different sized boxes, which revealed particle clumping. The countoscope’s ability to identify such collective behavior could one day help researchers understand the mechanisms that cause bacteria and other life forms to group together.

Biologists, chemists, and soft-matter physicists often study many-particle systems in which the particles shuffle around each other in a “random walk.” A useful measure of this behavior is the diffusion constant, which describes how fast an individual particle moves. A measurement of the diffusion constant can tell a biologist whether cells are healthy or sick, or it can tell a chemist how fast a molecule will move through a gel in a chemical-analysis device. The diffusion constant is typically determined by following the path of a single particle in a video recording. This trajectory reconstruction becomes difficult, however, when the particles are numerous and all look the same, says Sophie Marbach from Sorbonne University in France.

Oct 22, 2024

Past neuroscience research has pinpointed many of the neural processes through which the human brain forms

Posted by in categories: biotech/medical, neuroscience

stores and retrieves important information, such as domain-specific knowledge and memories. One dimension of human memory is the ability to link various aspects of experience to specific life events.

Past studies have suggested that this memory-related process is supported by phase precession, which is a shift in the timing at which specific neurons are fired. Up until now, however, this hypothesis had not been confirmed experimentally.

Researchers at the University of California, Davis, Harvard Medical School, Toronto Western Hospital and Cedars-Sinai Medical Center recently carried out a study aimed at probing the relationship between phase precession and memory.

Oct 22, 2024

Astronomers explore the properties of an obscured hyperluminous quasar

Posted by in category: space

Astronomers from the European University Cyprus and the University of Hawaii have investigated a recently discovered obscured hyperluminous quasar known as COS-87259. Results of the study, published October 14 in the Monthly Notices of the Royal Astronomical Society, shed more light on the properties of this quasar.

Oct 22, 2024

Nuclear fusion energy requires heat- and radiation-resilient materials to be reliable, says nuclear engineer

Posted by in categories: materials, nuclear energy

Fusion energy has the potential to be an effective clean energy source, as its reactions generate incredibly large amounts of energy. Fusion reactors aim to reproduce on Earth what happens in the core of the sun, where very light elements merge and release energy in the process. Engineers can harness this energy to heat water and generate electricity through a steam turbine, but the path to fusion isn’t completely straightforward.

Oct 22, 2024

Novel quantum lidar achieves high-sensitivity wind detection

Posted by in category: quantum physics

A research team has proposed a wind sensing lidar theory based on up-conversion quantum interference and successfully developed a prototype. Their work is published in ACS Photonics.

Page 24 of 11,905First2122232425262728Last