Toggle light / dark theme

Research into artificial intelligence (AI) network computing has made significant progress in recent years but has so far been held back by the limitations of logic gates in conventional computer chips. Through new research published in The European Physical Journal D, a team led by Aijin Zhu at Guilin University of Electronic Technology, China, introduced a graphene-based optical logic gate, which addresses many of these challenges.

The design could lead to a new generation of computer chips that consume less energy while reaching higher computing speeds and efficiencies. This could, in turn, pave the way for the use of AI in computer networks to automate tasks and improve decision-making—leading to enhanced performance, security, and functionality.

There are many advantages to microchips whose component logic gates exchange signals using light instead of electrical current. However, current designs are often bulky, somewhat unstable, and vulnerable to information loss.

OpenAI is in discussions with Sam Altman to return to the company as its CEO, according to multiple people familiar with the matter. One of them said Altman, who was suddenly fired by the board on Friday with no notice, is “ambivalent” about coming back and would want significant governance changes. There have been some leaks on the real reason Sam Altman was fired from OpenAI’s largest investor, Microsoft, said in a statement shortly after Altman’s firing that the company “remains committed” to its partnership with the AI firm. However, OpenAI’s investors weren’t given advance warning or opportunity to weigh in on the board’s decision to remove Altman. As the face of the company and the most prominent voice in AI, his removal throws the future of OpenAI into uncertainty at a time when rivals are racing to catch up with the unprecedented rise of ChatGPT.

TIMESTAMPS:
00:00 Vibes were off at OpenAI — Jimmy Apples.
00:55 Why Sam Altman was fired.
03:15 The Future of OpenAI and Sam Altman.

#openai #samaltman #microsoft

This week on Dezeen, Saudi Arabian mega-project Neom revealed its sixth region, Epicon, which will feature a pair of jagged skyscrapers on the Gulf of Aqaba.

Designed by architecture studio 10Design, the project will be distinguished by two steel-clad towers measuring 225 and 275 metres tall. They will be connected by horizontal levels set to contain an outdoor pool and other spaces.

Accommodating 41 hotel and luxury residences, the skyscrapers will be joined by the Epicon resort to form a luxury tourist destination.

One of the most startling scientific discoveries of recent decades is that physics appears to be fine-tuned for life. This means that for life to be possible, certain numbers in physics had to fall within a certain, very narrow range.

One of the examples of fine-tuning which has most baffled physicists is the strength of dark energy, the force that powers the accelerating expansion of the universe.

If that force had been just a little stronger, matter couldn’t clump together. No two particles would have ever combined, meaning no stars, planets, or any kind of structural complexity, and therefore no life.

In early October, as the Nobel Foundation announced the recipients of this year’s Nobel prizes, a group of researchers, including a previous laureate, met in Stockholm to discuss how artificial intelligence (AI) might have an increasingly creative role in the scientific process. The workshop, led in part by Hiroaki Kitano, a biologist and chief executive of Sony AI in Tokyo, considered creating prizes for AIs and AI–human collaborations that produce world-class science. Two years earlier, Kitano proposed the Nobel Turing Challenge1: the creation of highly autonomous systems (‘AI scientists’) with the potential to make Nobel-worthy discoveries by 2050.

It’s easy to imagine that AI could perform some of the necessary steps in scientific discovery. Researchers already use it to search the literature, automate data collection, run statistical analyses and even draft parts of papers. Generating hypotheses — a task that typically requires a creative spark to ask interesting and important questions — poses a more complex challenge. For Sendhil Mullainathan, an economist at the University of Chicago Booth School of Business in Illinois, “it’s probably been the single most exhilarating kind of research I’ve ever done in my life”