Toggle light / dark theme

Imagine a skin cream that heals damage occurring throughout the day when your skin is exposed to sunlight or environmental toxins. That’s the potential of a synthetic, biomimetic melanin developed by scientists at Northwestern University.

In a new study, the scientists show that their synthetic melanin, mimicking the natural melanin in human skin, can be applied topically to injured skin, where it accelerates wound healing. These effects occur both in the skin itself and systemically in the body.

When applied in a cream, the synthetic melanin can protect skin from sun exposure and heals skin injured by sun damage or chemical burns, the scientists said. The technology works by scavenging free radicals, which are produced by injured skin such as a sunburn. Left unchecked, free radical activity damages cells and ultimately may result in skin aging and skin cancer.

Researchers at the Francis Crick Institute and Aalborg University in Copenhagen have shown that changes can be detected in blood tests up to eight years before a diagnosis of Crohn’s disease and up to three years before a diagnosis of ulcerative colitis.

This means the beginnings of inflammatory diseases start a long time before symptoms occur, and in the future may provide an opportunity for doctors to take preventative action before symptoms begin, or prescribe medication when it will be most effective.

Crohn’s disease and ulcerative colitis are collectively known as inflammatory bowel diseases (IBD). They are incurable conditions which involve excessive inflammation in the gut, leading to symptoms like abdominal pain and diarrhea. Early diagnosis and treatment are key to improving outcomes, but nearly a quarter of the 25,000 people diagnosed each year in the UK wait over a year.

Micromechanical resonator performance is fundamentally limited by the coupling to a thermal environment. The magnitude of this thermodynamical effect is typically considered in accordance with a physical temperature, assumed to be uniform across the resonator’s physical span. However, in some circumstances, e.g., quantum optomechanics or interferometric gravitational wave detection, the temperature of the resonator may not be uniform, resulting in the resonator being thermally linked to a spatially varying thermal bath. In this case, the link of a mode of interest to its thermal environment is less straightforward to understand. Here, we engineer a distributed bath on a germane optomechanical platform—a phononic crystal—and utilize both highly localized and extended resonator modes to probe the spatially varying bath in entirely different bath regimes.

We investigate ultrafast harmonic generation (HG) in Si: B, driven by intense pump pulses with fields reaching sim100\phantomrule{0.28em0ex}kV\phantomrule{0.16em0ex}cm^-1 and a carrier frequency of 300 GHz, at 4 K and 300 K, both experimentally and theoretically. We report several findings concerning the nonlinear charge carrier dynamics in intense sub-THz fields: (i) Harmonics of order up to $n=9$ are observed at room temperature, while at low temperature we can resolve harmonics reaching at least $n=11$. The susceptibility per charge carrier at moderate field strength is as high as for charge carriers in graphene, considered to be one of the materials with the strongest sub-THz nonlinear response.

The idea of simulating quantum physics with controllable quantum devices had been proposed several decades ago. With the extensive development of quantum technology, large-scale simulation, such as the analog quantum simulation tailoring an artificial Hamiltonian mimicking the system of interest, has been implemented on elaborate quantum experimental platforms. However, due to the limitations caused by the significant noises and the connectivity, analog simulation is generically infeasible on near-term quantum computing platforms. Here we propose an alternative analog simulation approach on near-term quantum devices. Our approach circumvents the limitations by adaptively partitioning the bath into several groups based on the performance of the quantum devices.

Researchers at Rice University found that chiral phonons in a crystal can magnetize the material, aligning electron spins in a way similar to the effect of a strong magnetic field. This discovery challenges established notions in physics, particularly the concept of time-reversal symmetry, and paves the way for advanced research in quantum materials.

Quantum materials hold the key to a future of lightning-speed, energy-efficient information systems. The problem with tapping their transformative potential is that, in solids, the vast number of atoms often drowns out the exotic quantum properties electrons carry.

Rice University researchers in the lab of quantum materials scientist Hanyu Zhu found that when they move in circles, atoms can also work wonders: When the atomic lattice in a rare-earth crystal becomes animated with a corkscrew-shaped vibration known as a chiral phonon, the crystal is transformed into a magnet.