Toggle light / dark theme

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/product/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

“A lot of the technologies employed offshore now are the same technologies that have been there for the last 40 or 50 years,” says Mayall.

Turning to artificial intelligence and smart tech to overhaul maritime safety, his company Zelim is working on a trio of life-saving technologies — including an autonomous, unmanned lifeboat called “Guardian.”

The Scottish startup, which Mayall founded in 2017 when he was just 22 years old, is now working with the US Coastguard and several offshore energy companies to perfect its tech, which Mayall hopes can make rescues quicker for the victims and safer for the rescuers.

Although the transcriptomic signature of the tumor could not predict recurrence or the risk of progression, that of the TAN sample could successfully predict the recurrence of the disease and aid the stratification of patients into high-and low-risk groups.

This indicates the potential role of TAN tissue in future recurrence and its utility in predicting prognosis. However, TAN tissue could not accurately predict the formation of a new primary tumor.

This work explores the potential for additive manufacturing to be used to fabricate ultraviolet light-blocking or photocatalytic materials with in situ resource utilization, using a titania foam as a model system. Direct foam writing was used to deposit titania-based foam lines in microgravity using parabolic flight. The wet foam was based on titania primary particles and a titania precursor (Ti (IV) bis(ammonium lactato) dihydroxide). Lines were also printed in Earth gravity and their resulting properties were compared with regard to average cross-sectional area, height, and width. The cross-sectional height was found to be higher when printing at low speeds in microgravity compared to Earth gravity, but lower when printing at high speeds in microgravity compared to Earth gravity. It was also observed that volumetric flow rate was generally higher when writing in Earth gravity compared to microgravity. Additionally, heterogeneous photocatalytic degradation of methylene blue was studied to characterize the foams for water purification and was found to generally increase as the foam heat treatment temperature increased. Optical and scanning electron microscopies were used to observe foam morphology. X-ray diffraction spectroscopy was used to study the change in crystallinity with respect to temperature. Contact angle of water was found to increase on the surface of the foam as ultraviolet light exposure time increased. Additionally, the foam blocked more ultraviolet light over time when exposed to ultraviolet radiation. Finally, bubble coarsening measurements were taken to observe bubble radius growth over time.

A team of George Mason University scientists has received a federal grant of more than $13 million to work with the Department of the Navy to study and better understand increased solar activity that could potentially cause an “internet apocalypse” disrupting all electronic communications on Earth, including satellite communications.

Research from the grant, which will total $13.6 million in expenditures over five years, will be done in collaboration with the Naval Research Laboratory (NRL), and will include state-of-the-art data mining, analysis, and scientific modeling, among other endeavors, led by Mason faculty, students and staff. Under the terms of the contract, Mason provides scientific support for a broad range of astronomy-related activities that are of interest to the U.S. Navy and the nation at large.

“The main focus is on solar activity and the way it can impact systems on Earth,” said principal investigator Peter A. Becker, a professor in the Department of Physics and Astronomy within the College of Science. “This is especially important to the Navy—and more broadly the Department of Defense—because high-energy outbursts from the sun can have a strong negative impact on earthly radio and internet communications. And they can also have a detrimental effect on navigation systems and energy grids on Earth.”

Scientists using NASA’s James Webb Space Telescope just made a breakthrough discovery in revealing how planets are made. By observing water vapor in protoplanetary disks, Webb confirmed a physical process involving the drifting of ice-coated solids from the outer regions of the disk into the rocky-planet zone.

Theories have long proposed that icy pebbles forming in the cold, outer regions of protoplanetary disks — the same area where comets originate in our solar system — should be the fundamental seeds of planet formation. The main requirement of these theories is that pebbles should drift inward toward the star due to friction in the gaseous disk, delivering both solids and water to planets.

A fundamental prediction of this theory is that as icy pebbles enter into the warmer region within the “snowline” — where ice transitions to vapor — they should release large amounts of cold water vapor. This is exactly what Webb observed.