Toggle light / dark theme

Nvidia is delaying a new artificial intelligence chip for China that has been designed to comply with U.S. export restrictions, according to Reuters.


Nvidia shares closed down about 1.9% after a shortened trading day in the U.S.

Reuters, citing two sources familiar with the matter, reported that Nvidia told Chinese customers that it is delaying the launch of an AI chip that is designed to comply with U.S. export rules until the first quarter of next year.

The new chip, called the H20, was being delayed due to issues server manufacturers were having while integrating the semiconductor into their products, Reuters reported.

Scientists using the Telescope Array in Utah detected the second highest-energy cosmic ray ever. The singular subatomic particle was equivalent to dropping a brick on someone’s toe from waist height.

The Telescope Array comprises 507 surface detector stations arranged in a square grid located outside of Delta, Utah. It has been utilized to observe over 30 ultra-high-energy cosmic rays. These extreme cosmic rays have left scientists baffled about what produces them. The latest observation, as well as the highest-ever recorded event known as the Oh-My-God particle, appears to have originated from the Local Void, an empty area of space bordering the Milky Way galaxy.

“The particles are so high energy, they shouldn’t be affected by galactic and extra-galactic magnetic fields,” remarked John Matthews, Telescope Array co-spokesperson and co-author of the study. “You should be able to point to where they come from in the sky. But in the case of the Oh-My-God particle and this new particle, you trace its trajectory and there’s nothing high energy enough to have produced it. That’s the mystery — what the heck is going on?”

Monoclonal antibodies are immune system proteins that are created in the lab. Antibodies are produced naturally by your body and help the immune system recognize germs that cause disease, such as bacteria and viruses, and mark them for destruction. Like your body’s own antibodies, monoclonal antibodies recognize specific targets.

Many monoclonal antibodies are used to treat cancer. They are a type of targeted cancer therapy, which means they are designed to interact with specific targets. Learn more about targeted therapy.

Some monoclonal antibodies are also immunotherapy because they help turn the immune system against cancer. For example, some monoclonal antibodies mark cancer cells so that the immune system will better recognize and destroy them. An example is rituximab, which binds to a protein called CD20 on B cells and some types of cancer cells, causing the immune system to kill them. B cells are a type of white blood cell.

Cleveland Clinic researchers analyzed genes and brain tissue of patients with Alzheimer’s and found that differences in brain immunometabolism – the interactions between the immune system and the ways cells create energy – may contribute to women’s increased risk for the disease and its severity.

The findings, published in Alzheimer’s and Dementia, offer important insight into developing sex-specific treatment and prevention options for Alzheimer’s disease, the sixth-leading cause of death in the United States.

“Our immune systems depend on communication between different cell types in our bodies, which are fueled by energy created from unique metabolic processes,” said Justin Lathia, Ph.D., vice chair of the Department of Cardiovascular and Metabolic Sciences and co-author on the paper. “As sex influences both the immune system and metabolic process, our study aimed to identify how all of these individual factors influence one another to contribute to Alzheimer’s disease.”

The next big advance in cancer treatment could be a vaccine that can shrink tumors and stop cancer from coming back. Among the targets for the experimental shots: melanoma, pancreatic cancer, breast cancer and lung cancer. Scientists are predicting new cancer vaccine approvals within five years (June 26) (AP Video by Manuel Valdes & Carla Johnson)

Subscribe for more Breaking News: http://smarturl.it/AssociatedPress.
Website: https://apnews.com.
Twitter: https://twitter.com/AP
Facebook: https://facebook.com/APNews.
Instagram: https://www.instagram.com/APNews/

You can license this story through AP Archive: http://www.aparchive.com/metadata/youtube/feab753e210b4468925734a2936956dd.

#cancer

In a new study published in Physical Review Letters, scientists explore how small water jets can create stable periodic oscillations on a solid disk, uncovering a connection between these movements and the waves they generate and providing insights into the dynamic interplay of fluid behavior.

A hydraulic jump is a phenomenon that occurs when a fast-flowing liquid abruptly encounters a slower-flowing or stagnant region. This sudden transition results in a change in the flow’s characteristics, causing the formation of a visible jump or surge in the liquid’s height.

In this process, the kinetic energy of the fast-flowing liquid is converted into , leading to changes in velocity and flow depth. This phenomenon is commonly observed in various settings, such as when a liquid jet impacts a surface, for example in rivers or downstream from dams.

Contrary to popular belief, the brain does not have the capability to rewire itself to compensate for loss of sight, amputations, or stroke-related damage, according to scientists from the University of Cambridge and Johns Hopkins University.

In a recent paper published in eLife, Professors Tamar Makin (Cambridge) and John Krakauer (Johns Hopkins) argue that the notion that the brain, in response to injury or deficit, can reorganize itself and repurpose particular regions for new functions, is fundamentally flawed – despite being commonly cited in scientific textbooks. Instead, they argue that what is occurring is merely the brain being trained to utilize already existing, but latent, abilities.

Wouldn’t it be nice to have a computer answer all of the biggest questions in the universe?

In his first year of graduate school, in 2013, Michael Wagman walked into his advisor’s office and asked, “Can you help me simulate the universe?”

Wagman, a theoretical physicist and associate scientist at the US Department of Energy’s Fermi National Accelerator Laboratory, thought it seemed like a reasonable question to ask. “We have all of these beautiful theoretical descriptions of how we think the world works, so I wanted to try and connect those formal laws of physics to my everyday experience of reality,” he says.

Open-source supercomputer algorithm predicts patterning and dynamics of living materials and enables studying their behavior in space and time.

Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called “active matter.” The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations.

Scientists from the Max Planck Institute of Molecular Cell.