Toggle light / dark theme

The researchers found 139 genes that are common across the primate groups but highly divergent in their expression in human brains.

An international team led by researchers at the University of Toronto has uncovered over 100 genes that are common to primate brains but have undergone evolutionary divergence only in humans – and which could be a source of our unique cognitive ability.

The researchers, led by Associate Professor Jesse Gillis from the Donnelly Centre for Cellular and Biomolecular Research and the Department of Physiology at U of T’s Temerty Faculty of Medicine, found the genes are expressed differently in the brains of humans compared to four of our relatives – chimpanzees, gorillas, macaques, and marmosets.

Feng Guo, an associate professor of intelligent systems engineering at the Indiana University Luddy School of Informatics, Computing and Engineering, is addressing the technical limitations of artificial intelligence computing hardware by developing a new hybrid computing system—which has been dubbed “Brainoware”—that combines electronic hardware with human brain organoids.

Advanced AI techniques, such as and , which are powered by specialized silicon computer chips, expend enormous amounts of energy. As such, engineers have designed neuromorphic computing systems, modeled after the structure and function of a human brain, to improve the performance and efficiency of these technologies. However, these systems are still limited in their ability to fully mimic brain function, as most are built on digital electronic principles.

In response, Guo and a team of IU researchers, including graduate student Hongwei Cai, have developed a hybrid neuromorphic computing system that mounts a brain organoid onto a multielectrode assay to receive and send information. The brain organoids are brain-like 3D cell cultures derived from and characterized by different brain cell types, including neurons and glia, and brain-like structures such as ventricular zones.

Amid a rise in the innovation of wearable technology, researchers are looking for ways to harness the adaptive sensing ability of the human body.

A recent University of Melbourne panel discussion covered the future of wearable sensors. Professor Graham Kerr, Bill Dimopoulos, Galen Gan and Professor Peter Lee considered the management of information generated from such technology and its interpretation for improving health.