Toggle light / dark theme

Amazon Q, currently available for contact centers, will be integrated to other AWS services soon.

Amazon’s cloud business AWS launched a chat tool called Amazon Q, where businesses can ask questions specific to their companies.


Amazon Q can work with any of the models found on Amazon Bedrock, AWS’s repository of AI models, which includes Meta’s Llama 2 and Anthropic’s Claude 2. The company said customers who use Q often choose which model works best for them; connect to the Bedrock API for the model; use that to learn their data, policies, and workflow; and then deploy Amazon Q.

AWS said Amazon Q was trained on 17 years’ worth of AWS knowledge and can be used to ask questions specific to AWS use. It can suggest the best AWS services for a project.

Former Snap software engineer Joshua Xu believes AI-generated video is about to have a moment like Snapchat or Instagram had in the early days of the mobile photography revolution.


As early proof of that, he points to his own company HeyGen. After launching its AI-powered video creation app last September, HeyGen reached $1 million in annual recurring revenue in March, then $10 million in August. Today, that number is up to $18 million, Xu, cofounder and CEO, told Forbes.

“Snapchat is a camera company where everyone creates content through the mobile camera,” Xu said. “We think AI can create the content. AI could become the new camera.”

On Wednesday, HeyGen announced $5.6 million in new venture capital funding led by Sarah Guo’s Conviction Partners. The round values the Los Angeles-based company at $75 million; As part of the deal, Guo will take a board seat in place of HongShan (formerly Sequoia China) as HeyGen takes measures to distance itself from its Chinese origins.

It seems for every proponent for quantum computing there is also a detractor.


Given the amount of quantum computing investment, advancements, and activity, the industry is set for a dynamic change, similar to that caused by AI – increased performance, functionality, and intelligence. This also comes with the same challenges presented by AI, such as security, as outlined in the recent Quantum Safe Cryptography article. But just like AI, quantum computing is coming. You might say that quantum computing is where AI was in 2015, fascinating but not widely utilized. Fast forward just five years and AI was being integrated into almost every platform and application. In just five years, quantum computing could take computing and humanity to a new level of knowledge and understanding.

Follow me on Twitter or LinkedIn. Check out my website.

The author and members of the Tirias Research staff do not hold equity positions in any of the companies mentioned. Tirias Research tracks and consults for companies throughout the electronics ecosystem from semiconductors to systems and sensors to the cloud. Tirias Research has consulted for IBM, Intel Microsoft, Nvidia, Toshiba, and companies throughout the quantum computing ecosystem.

Quantum computing, the cutting-edge technology that promises unprecedented computational power, has taken a significant leap forward with the unveiling of a groundbreaking quantum chip by Amazon Web Services.

“It’s a custom-designed chip that’s totally fabricated in house by our AWS quantum team,” said Peter Desantis, senior vice president of AWS utility computing products, during a keynote address in Las Vegas at AWS’s re: Invent conference for the global cloud computing community.

DeSantis said the state-of-the-art chip represents a major milestone in the quest for error-corrected quantum computers. “We’ve been able to suppress errors by 100x by using a passive error correction approach,” he said.

Northwestern University researchers have raised the standards again for perovskite solar cells with a new development that helped the emerging technology hit new records for efficiency.

The findings, published today (Nov. 17) in the journal Science, describe a dual-molecule solution to overcoming losses in efficiency as sunlight is converted to energy. By incorporating first, a molecule to address something called surface recombination, in which electrons are lost when they are trapped by defects—missing atoms on the surface, and a second molecule to disrupt recombination at the interface between layers, the team achieved a National Renewable Energy Lab (NREL) certified efficiency of 25.1% where earlier approaches reached efficiencies of just 24.09%.

“Perovskite solar technology is moving fast, and the emphasis of research and development is shifting from the bulk absorber to the interfaces,” said Northwestern professor Ted Sargent. “This is the critical point to further improve efficiency and stability and bring us closer to this promising route to ever-more-efficient solar harvesting.”

Researchers investigate whether dark matter particles actually are produced inside a jet of standard model particles.

The existence of dark matter is a long-standing puzzle in our universe. Dark matter makes up about a quarter of our universe, yet it does not interact significantly with ordinary matter. The existence of dark matter has been confirmed by a series of astrophysical and cosmological observations, including in the stunning recent pictures from the James Webb Space Telescope. However, up to date, no experimental observation of dark matter has been reported. The existence of dark matter has been a question that high energy and astrophysicists around the world have been investigating for decades.

Advancements in Dark Matter Research.

Electrocatalysis expands the ability to generate industrially relevant chemicals locally and on-demand with intermittent renewable energy, thereby improving grid resiliency and reducing supply logistics. Herein, we report the feasibility of using molecular copper boron-imidazolate cages, BIF-29(Cu), to enable coupling between the electroreduction reaction of CO2 (CO2RR) with NO3– reduction (NO3RR) to produce urea with high selectivity of 68.5% and activity of 424 μA cm–2. Remarkably, BIF-29(Cu) is among the most selective systems for this multistep C–N coupling to-date, despite possessing isolated single-metal sites. The mechanism for C–N bond formation was probed with a combination of electrochemical analysis, in situ spectroscopy, and atomic-scale simulations. We found that NO3RR and CO2RR occur in tandem at separate copper sites with the most favorable C–N coupling pathway following the condensation between *CO and NH2OH to produce urea. This work highlights the utility of supramolecular metal–organic cages with atomically discrete active sites to enable highly efficient coupling reactions.