Toggle light / dark theme

Dec 1 (Reuters) — Amazon (AMZN.O) on Friday said it booked three Falcon 9 launches with Elon Musk’s SpaceX to help deploy the ecommerce giant’s Project Kuiper satellite network, tapping a rival in the satellite internet business for its multi-billion dollar launch campaign.

Amazon aims to build Kuiper as a constellation of 3,236 satellites in low Earth orbit to beam broadband internet globally and compete with SpaceX’s Starlink network, which already has some 5,000 satellites providing nearly global coverage.

Amazon, which vowed in 2019 to invest $10 billion into the project, will put an unspecified number of Kuiper satellites on three Falcon 9 rockets from SpaceX beginning in mid-2025, the company said Friday.

Summary: Dopamine, a neurotransmitter, plays a vital role in encoding both reward and punishment prediction errors in the human brain.

This study suggests that dopamine is essential for learning from both positive and negative experiences, enabling the brain to adapt behavior based on outcomes. Using electrochemical techniques and machine learning, scientists measured dopamine levels in real-time during a computer game involving rewards and penalties.

The findings shed light on the intricate role of dopamine in human behavior and could have implications for understanding psychiatric and neurological disorders.

Pentoses are essential carbohydrates in the metabolism of modern lifeforms, but their availability during early Earth is unclear since these molecules are unstable.

A new study, published in the journal JACS Au and led by the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology, Japan, reveals a chemical pathway compatible with early Earth conditions and by which C6 aldonates could have acted as a source of pentoses without the need for enzymes. Their findings provide clues about primitive biochemistry and bring us closer to understanding the Origins of Life.

The emergence of life on Earth from simple chemicals is one of the most exciting yet challenging topics in biochemistry and perhaps all of science. Modern lifeforms can transform nutrients into all sorts of compounds through complex chemical networks; what’s more, they can catalyze very specific transformations using enzymes, achieving a very fine control over what molecules are produced.

Researchers are claiming a breakthrough in quantum communications, thanks to a new diamond-stretching technique they say greatly increases the temperatures at which qubits remain entangled, while also making them microwave-controllable.

Quantum networking is an emerging field that uses weird quantum phenomena to send and receive information. These networks will be impossible to hack, and will use quantum entanglement to cover large distances, creating pairs of qubits which mirror each other’s quantum state without any physical connection.

Diamond-based qubits are capable of maintaining their state of entanglement for a decent length of time – but only provided they’re kept incredibly cold – just a hair above absolute zero. That limits their usefulness, because it’d mean you’d need a giant, energy-intensive cooling apparatus at every node of your quantum network.

After five years, more than 350,000 hours of genome sequencing, and over £200 million of investment, UK Biobank is releasing the world’s largest-by-far single set of human sequencing data—completing the most ambitious project of its kind ever undertaken. The new data, whole genome sequences of its half a million participants, will certainly drive the discovery of new diagnostics, treatments, and cures. Uniquely, the data are available to approved researchers worldwide, via a protected database containing only de-identified data.

This advance lies not only in the abundance of genomic data, but its use in combination with the existing data UK Biobank has collected over the past 15 years on lifestyle, whole body imaging scans, health information, and proteins found in the blood. The Pharma Proteomics Project was published last month in Nature, in the paper, “Plasma proteomic associations with genetics and health in the UK Biobank.

Looking forward, these data could be used to further advance efforts such as more targeted drug discovery and development, discovering thousands of disease-causing noncoding genetic variants, accelerating precision medicine, and understanding the biological underpinnings of disease.

Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity—factors that determine general information processing capacity (IPC), as reflected by general intelligence.