Toggle light / dark theme

Physicists at the National University of Singapore have innovated a concept to induce and directly quantify spin splitting in two-dimensional materials. By using this concept, they have experimentally achieved large tunability and a high degree of spin-polarisation in graphene. This research achievement can potentially advance the field of two-dimensional (2D) spintronics, with applications for low-power electronics.

Joule heating poses a significant challenge in modern electronics, especially in devices such as personal computers and smartphones. This is an effect that occurs when the flow of electrical current passing through a material produces thermal energy, subsequently raising the material’s temperature.

One potential solution involves the use of spin, instead of charge, in logic circuits. These circuits can, in principle, offer low-power consumption and ultrafast speed, owing to the reduction or elimination of Joule heating. This has given rise to the emerging field of spintronics.

Scientists from the Technical University of Denmark (DTU) have confirmed the underlying physics of a newly discovered phenomenon of magnet levitation. In 2021, a scientist from Turkey published a research paper detailing an experiment where a magnet was attached to a motor, causing it to rotate rapidly. When this setup was brought near a second magnet, the second magnet began to rotate and suddenly hovered in a fixed position a few centimeters away.

University of Chicago scientists have developed a way to improve chemical reactions in drug manufacturing using electricity. This breakthrough in electrochemistry, enhancing efficiency and sustainability, opens new avenues in green chemical production. Credit: SciTechDaily.com.

As the world moves away from gas towards electricity as a greener power source, the to-do list goes beyond cars. The vast global manufacturing network that makes everything from our batteries to our fertilizers needs to flip the switch, too.

A study from UChicago chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs.

Furthermore, they are recognized transcription factors critical in human embryo development and tissue function.

Potential novel cancer therapeutics

The statement noted that this discovery opens the door to potential novel cancer therapeutics.

“NK cells, our first line of defense against pathogens and internal threats like cancers, could be fortified by therapies enhancing their killing prowess by targeting IKAROS and JUN/FOS biology.”

This week, Intel began to receive its first ASML’s extreme ultraviolet (EUV) lithography tool with a 0.55 numerical aperture (High-NA), which it will use to learn how to use the technology before deploying the machines for a post-18A production node in the next couple of years or so. By contrast, TSMC is in no rush to adopt High-NA EUV any time soon, and it might be years before the company jumps on this bandwagon in 2030 or beyond, according to analysts from both China Renaissance and SemiAnalysis.

“In contrast to Intel’s use of High-NA EUV soon after its shift to GAA (planned for [20A] insertion), we expect TSMC’sHigh-NA EUV insertion in the post N1.4 era (the inflection likely at N1, scheduled for post-2030 launch),” wrote Szeho Ng, an analyst with China Renaissance.

Super Humanity — This documentary examines breakthroughs in neuroscience and technology. Imagine a future where the human brain and artificial intelligence connect.

Super Humanity (2019)
Director: Ruth Chao.
Writers: Ruth Chao, Paula Cons, Alphonse de la Puente.
Genre: Documentary, Sci-Fi.
Country: Portugal, Spain.
Language: English.
Release Date: December 27, 2019 (Spain)

Also Known As (AKA):
(original title) O Futuro da Mente.
El futuro de la mente.
Netherlands O Futuro da Mente.
Poland O Futuro da Mente.
Portugal O Futuro da Mente.
South Korea O Futuro da Mente.
Spain El futuro de la mente.
United States Mind Forward.

SUPPORT US!

Scientists have created unique Slater-Pauling Heusler materials with semiconductor properties, offering significant potential in thermoelectric applications. Their research reveals these materials’ unique electron redistribution and thermal properties.

Recently, researchers from Hefei Institutes of Physical Science (HFIPS) of Chinese Academy of Sciences (CAS) designed Slater-Pauling (S-P) Heusler materials with a unique structure resembling a Rubik’s cube. These materials showed potential in thermoelectric applications due to their semiconductor-like properties.

Unique Semiconductor Behavior