Toggle light / dark theme

Last year, scientists discovered a mathematically perfect star system — and now, they’re looking into whether it might contain signs of alien tech.

Dubbed HD 110067, the star system located just 100 light-years from Earth has six exoplanets that are each perfectly spaced apart in the sort of mathematical harmony rarely seen in our chaotic Universe. In a paper published in the journal Nature last November, scientists listed off the astounding attributes of the system, which unfortunately did not include any planets in the so-called “habitable zone,” or distance from the orbit-inducing star that could support life as we know it here on Earth.

All the same, scientists aren’t done looking, and as radio astronomer and alien life-seeking expert Steve Croft of the University of Berkeley told Space.com, there’s no reason that advanced civilizations may not have visited HD 110,067 and potentially left some of their technology behind.

One major area of our lives that uses largely “hidden” AI is transportation. Millions of flights and train trips are coordinated by AI all over the world. These AI systems are meant to optimize schedules to reduce costs and maximize efficiency.

Artificial intelligence can also manage real-time road traffic by analyzing traffic patterns, volume and other factors, and then adjusting traffic lights and signals accordingly. Navigation apps like Google Maps also use AI optimization algorithms to find the best path in their navigation systems.

AI is also present in various everyday items. Robot vacuum cleaners use AI software to process all their sensor inputs and deftly navigate our homes.

Researchers can engineer cells to express new genes and produce specific proteins, giving the cells new parts to work with. But, it’s much harder to provide cells with instructions on how to organize and use those new parts. Now, new tools from University of Wisconsin–Madison researchers offer an innovative way around this problem.

Their research is published in the journal Cell.

Everything a cell does depends on how molecules are organized within the cell. Inside our cells—all cells—proteins and other molecules undergo organization and reorganization to carry out cellular function. Like a fleet of commuter trains moving at scheduled intervals along their different routes, proteins within a cell are organized in time and space to carry out complex but predictable functions.

Philosopher David Chalmers and neuroscientist Christof Koch made a bet in 1998 on a breakthrough in consciousness research within 25 years. Now the bet is settled – thanks to the journalist Per Snaprud, neuroscience editor at the Swedish popular science magazine Forskning \& Framsteg. Here’s a conversation that was held between the three at New York university on June 24:th 2023.

The brain is typically depicted as a complex web of neurons sending and receiving messages. But neurons only make up half of the human brain. The other half—roughly 85 billion cells—are non-neuronal cells called glia.

The most common type of glial cells are , which are important for supporting neuronal health and activity. Despite this, most existing laboratory models of the human brain fail to include astrocytes at sufficient levels or at all, which limits the models’ utility for studying brain health and disease.

Now, Salk scientists have created a novel organoid model of the human brain—a three-dimensional collection of cells that mimics features of human tissues—that contains mature, functional astrocytes. With this astrocyte-rich model, researchers will be able to study inflammation and stress in aging and diseases like Alzheimer’s with greater clarity and depth than ever before.