“Lake Enigma” is living up to its name.
This latest clue about the architecture of consciousness supports a Nobel Prize winner’s theory about how quantum physics works in your brain.
By testing the boundaries of reality, Spanish-language authors have created a sublime counterpart to experimental physics.
Latest battery storage auction prices in China stun analysts with another big price fall that could fast-track green energy switch and uptake of EVs.
A team of University of Melbourne researchers from the Caruso Nanoengineering Group has created an innovative drug delivery system with outstanding potential to improve drug development.
The team has pioneered a drug delivery system that is a coordination network composed of only metal ions and biomolecules, known as metal–biomolecule network (MBN). This system eliminates the need for complicated drug “carriers,” making it potentially more useful in a range of applications.
The research has been published in Science Advances and was led by Melbourne Laureate Professor and NHMRC Leadership Fellow Frank Caruso, from the Department of Chemical Engineering in the Faculty of Engineering and Information Technology, with Research Fellows Dr. Wanjun Xu and Dr. Zhixing Lin joint first authors.
As astronauts venture further into space, their exposure to harmful radiation rises. Researchers from Columbia University are simulating the effects of space radiation here on Earth to determine its impact on human physiology using multi-organ tissue chips. Their work documents the differential effects seen in tissues after acute and prolonged radiation exposure and identifies multiple genes of interest that could help inform the development of future radioprotective agents.
Their study appears in Advanced Science.
“As deep space exploration continues to unfold, it is vital to understand the physiological damage caused by space radiation to better mitigate its effects. By exposing multi-organ models to simulated cosmic radiation, this study has laid the groundwork to aid in this effort,” commented Jermont Chen, Ph.D., a program director in the Division of Discovery Science and Technology at NIBIB.
For nearly his entire life, Dr. Stuart Hameroff has been fascinated with the bedeviling question of consciousness. But instead of studying neurology or another field commonly associated with the inner workings of the brain, it was Hameroff’s familiarity with anesthetics, a family of drugs that famously induces the opposite of consciousness, that fueled his curiosity.
“I thought about neurology, psychology, and neurosurgery, but none of those… eemed to be dealing with the problem of consciousness,” says Hameroff, a now-retired professor of anesthesiology from the University of Arizona. Hameroff recalls a particularly eye-opening moment when he first arrived at the university and met the chairman of the anesthesia department. “He says ‘hey, if you want to understand consciousness, figure out how anesthesia works because we don’t have a clue.’”
Hameroff’s work in anesthesia showed that unconsciousness occurred due to some effect on microtubules and wondered if perhaps these structures somehow played a role in forming consciousness. So instead of using the neuron, or the brain’s nerve cells, as the “base unit” of consciousness, Hameroff’s ideas delved deeper and looked at the billions of individual tubulins inside microtubules themselves. He quickly became obsessed.
This bioengineering breakthrough has found a way to make neurons grown in a dish react just like the real thing.
Enter Stephen wolfram afterwords.