Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

China achieves important breakthrough in creating ‘shield’ for fusion reactor

Prototype component of the divertor of China’s Comprehensive Research Facility for Fusion Technology (CRAFT) Photo: Xinhua.

China has achieved an important breakthrough in the development of its next-generation “artificial sun” with the prototype component of the divertor of China’s Comprehensive Research Facility for Fusion Technology (CRAFT), passing expert evaluation and acceptance procedures on Monday, Xinhua News Agency reported.

The CRAFT is a platform on which engineers develop and test key components of fusion energy reactors.

AI Breakthrough Finally Cracks Century-Old Physics Problem

An AI framework now computes once-impossible physics equations within seconds. The breakthrough redefines how scientists study the behavior of materials. Researchers at the University of New Mexico and Los Alamos National Laboratory have created an advanced computational framework that solves a m

Multimode quantum entanglement achieved via dissipation engineering

A research team led by Prof. Lin Yiheng from the University of Science and Technology of China (USTC), collaborating with Prof. Yuan Haidong from the Chinese University of Hong Kong, succeeded in generating multipartite quantum entangled states across two, three, and five modes using controlled dissipation as a resource. Their study is published in Science Advances.

Multimode entanglement is a key resource in quantum computation, communication, simulation, and sensing. One of the major challenges in achieving stable and scalable multimode entanglement lies in the inherent susceptibility of quantum systems to environmental noise—a phenomenon known as . To mitigate dissipative effects, conventional preparation methods often require isolating the system from its surroundings.

Recent theoretical and experimental works have revealed an innovative perspective: when properly engineered, dissipation can be transformed into a resource for generating specific quantum states—known as dissipation engineering. However, previous related experiments were confined to single-mode and two-mode quantum systems, and significant challenges remain in the experimental realization of entangled states across multimode bosonic systems.

Advances in AI will boost productivity, living standards over time

Artificial intelligence offers the potential to improve people’s living standards. Such advances can be approximated by changes in GDP per capita over time. Using that common measure, AI could enhance longstanding productivity gains or, alternatively, drastically alter the economy in relatively short order.

Analysis of genomic heterogeneity and the mutational landscape in cutaneous squamous cell carcinoma through multi-patient-targeted single-cell DNA sequencing

Cutaneous squamous cell carcinoma (CSCC) is a prevalent skin cancer with aggressive progression that poses significant challenges, especially in metastatic cases. Single-cell DNA sequencing (scDNA-seq) has become an advanced technology for elucidating tumor heterogeneity and clonal evolution. However, comprehensive scDNA-seq studies and tailored mutation panels for CSCC are lacking.

We analyzed the genomic landscape of Chinese CSCC patients via a Multi-Patient-Targeted (MPT) scDNA-seq approach. This method combined bulk exome sequencing with Tapestri scDNA-seq. Mutations identified through bulk sequencing were used to design a targeted panel for scDNA-seq. Comparative analysis was conducted to explore the associations between specific gene mutations and clinical characteristics such as tumor stage and patient sex. Clonal evolution analysis was performed to understand the evolutionary trajectories of the tumors.

Bulk sequencing revealed a diverse spectrum of somatic mutations in CSCC tumors, with missense mutations being predominant. The top tumor mutations, such as those in NOTCH1, TP53, NOTCH2, TTN, MUC16, RYR2, PRUNE2, DMD, HRAS, and CDKN2A, presented similar frequencies to those reported in studies in Korean and Caucasian populations. However, the mutation frequencies of HRAS, TTN, MUC16 and MUC4 were significantly different from the Korean and Caucasian populations. Comparative analysis revealed associations between specific gene mutations and clinical characteristics such as tumor stage and patient sex. Clonal evolution analysis via scDNA-seq revealed distinct evolutionary trajectories and their potential correlation with tumor development and patient prognosis. Furthermore, scDNA-seq identified two low-frequency mutation clones, NLRP5 and HMMR, which play important roles in the clonal evolution of CSCC.

/* */