Toggle light / dark theme

The core components of CRISPR-based genome-editing therapies are bacterial proteins called nucleases that can stimulate unwanted immune responses in people, increasing the chances of side effects and making these therapies potentially less effective.

Researchers at the Broad Institute of MIT and Harvard and Cyrus Biotechnology have now engineered two CRISPR nucleases, Cas9 and Cas12, to mask them from the immune system. The team identified protein sequences on each nuclease that trigger the immune system and used computational modeling to design new versions that evade immune recognition. The engineered enzymes had similar gene-editing efficiency and reduced immune responses compared to standard nucleases in mice.

Appearing today in Nature Communications, the findings could help pave the way for safer, more efficient gene therapies. The study was led by Feng Zhang, a core institute member at the Broad and an Investigator at the McGovern Institute for Brain Research at MIT.

A new study by researchers at the Department of Molecular Medicine at SDU sheds light on one of the most severe consequences of stroke: damage to the brain’s “cables”—the so-called nerve fibers—which leads to permanent impairments. The study, published in The Journal of Pathology, which is based on unique tissue samples from Denmark’s Brain Bank located at SDU, may pave the way for new treatments that help the brain repair itself.

A stroke occurs when the to part of the brain is blocked, leading to brain damage. Following an injury, the brain tries to repair the damaged nerve fibers by re-establishing their insulating layer, called myelin. Unfortunately, the often succeeds only partially, meaning many patients experience lasting damage to their physical and mental functions.

According to Professor Kate Lykke Lambertsen, one of the study’s lead authors, the brain has the resources to repair itself, “We need to find ways to help the cells complete their work, even under difficult conditions.”

An automated system could potentially monitor real-time images of coronal loop brightness shifts from the Solar Dynamics Observatory, thus enabling scientists to issue timely alerts.

“We could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations,” said Vadim Uritsky, an expert in space physics at NASA’s Goddard Space Flight Center (GSFC) and Catholic University in Washington D.C.

The discovery of flickering coronal loops as a precursor to solar flares opens up transformative possibilities in both research and technology.

A Massive Star’s Unusual Formation Surprise

Astronomers have uncovered an extraordinary discovery in the formation of stars, observing a colossal young star, MM 1a, forming a smaller companion star, MM 1b, instead of planets. Using the Atacama Large Millimeter/submillimeter Array (ALMA), researchers identified MM 1b on the outskirts of MM 1a’s dense disk of dust and gas, a region traditionally associated with planet formation.

In biology textbooks, the endoplasmic reticulum is often portrayed as a distinct, compact organelle near the nucleus, and is commonly known to be responsible for protein trafficking and secretion. In reality, the ER is vast and dynamic, spread throughout the cell and able to establish contact and communication with and between other organelles. These membrane contacts regulate processes as diverse as fat metabolism, sugar metabolism, and immune responses.

Exploring how pathogens manipulate and hijack essential processes to promote their own life cycles can reveal much about fundamental cellular functions and provide insight into viable treatment options for understudied pathogens.

New research from the Lamason Lab in the Department of Biology at MIT recently published in the Journal of Cell Biology has shown that Rickettsia parkeri, a bacterial pathogen that lives freely in the cytosol, can interact in an extensive and stable way with the rough , forming previously unseen contacts with the organelle.

Unexpected crises or events, such as the COVID-19 pandemic or natural disasters, can cause disruptions to a city’s economy. For instance, forcing businesses to temporarily close or hindering their daily operations. As businesses often rely on each other, changes in the operation of one company can cause ripple effects, like influencing its suppliers, distributors or other businesses it depends on.

To explore the widespread economic impact of shocks and adverse events, past studies primarily examined the proximity between businesses, assuming that businesses are primarily connected to nearby companies or establishments. However, some findings suggest that people’s movements between businesses (i.e., behavior-based dependencies) also contribute to the resilience of cities following economic disruptions.

These dependencies are essentially relationships between businesses shaped by the behavior and habits of shared customers. For example, if a tech company is forced to close its offices, this might impact not only other nearby restaurants, but also gyms or other establishments located in different parts of a , which some employees typically visit before or after work.