Toggle light / dark theme

Northwestern Medicine investigators have identified a previously unknown regulator of tumor immune evasion, which may help improve the efficacy of current and future anti-tumor immunotherapies, according to recent findings published in the Journal of Clinical Investigation.

“The study provides a molecular insight into understanding why some cannot be treated by the checkpoint blockade antitumor therapy, but others can,” said Deyu Fang, Ph.D., the Hosmer Allen Johnson Professor of Pathology and senior author of the study.

Antitumor immunotherapy is a type of treatment that helps the immune system in fighting cancer and includes a range of therapy types, such as . Immune checkpoints help prevent the immune system from being too strong and eradicating other , including .

The immune system deteriorates with age, making COVID-19 particularly deadly in older people—but to date, no clinically available medication addresses this key risk factor. A study published today in Nature shows that an oral drug that reverses multiple aspects of immune aging effectively prevents death in a mouse model of COVID-19, suggesting that the medication could be used to protect the elderly patients who are at greatest risk in the pandemic.

In the study, daily doses of BGE-175 (asapiprant) protected aged mice from a lethal dose of SARS-CoV-2, the virus that causes COVID-19. Ninety percent of mice that received the drug survived, whereas all untreated control mice died. BGE-175 treatment was initiated two days after infection, when the mice were already ill, a time-frame relevant to real-life clinical situations in which patients would receive medication only after becoming symptomatic.

The mouse model used in the study closely mirrored the pathological progression of human COVID-19. The mouse-adapted strain of SARS-CoV-2 generated by the researchers caused a disease that shared many of the hallmarks of human COVID-19: accumulation of fluid in the air sacs of the lungs, extensive infiltration of lung tissue by , and high levels of pro-inflammatory factors called cytokines.

Consciousness is one of the most mysterious and fascinating aspects of human existence. It is also one of the most challenging to study scientifically, as it involves subjective experiences that are not directly observable or measurable. David Chalmers, a professor of philosophy and neural science at NYU mentions in his book The Conscious Mind.

“It may be the largest outstanding obstacle in our quest for a scientific understanding of the universe.”

The real questions are: how can we approach the problem of consciousness from a rigorous and objective perspective? Is there a way to quantify and model the phenomena of awareness, feelings, thoughts, and selfhood? There is no definitive answer to this question, but some researchers have attempted to use mathematical tools and methods to study these phenomena. Self-awareness, for instance, is the ability to perceive and understand the things that make you who you are as an individual, such as your personality, actions, values, beliefs, and even thoughts. Some studies have used the mirror test to assess the development of self-awareness in infants and animals.