Toggle light / dark theme

The recently approved drug motixafortide may help improve stem cell transplants for people with multiple myeloma. Learn more about this treatment:


However, Dr. Schulz cautioned, this finding is not definitive because the two drugs were not tested head-to-head in a randomized trial. A randomized clinical trial comparing the drugs “would have been a better and fairer comparison,” he said, since plerixafor and motixafortide both work by blocking a chemical signal that tells stem cells to stay in the bone marrow.

Finally, Dr. Crees and his colleagues did a series of experiments looking at the different types of blood-forming stem cells mobilized by G-CSF plus placebo, motixafortide, or plerixafor.

“Not all stem cells are equal,” Dr. Schulz explained. And these experiments showed that motixafortide mobilized a higher percentage than plerixafor or placebo of the most primitive types of blood-forming stem cells, which could potentially lead to faster engraftment, he said.

Researchers describe a newly observed role for the protein Cyclin Dependent Kinase 9 (CDK9) in regulating DNA repair during cellular division, where errors can become the origin of cancerous tumor growth. Through a process called phosphorylation, the experiment simulated the interaction of CDK9 with the other proteins and genes involved in cell division and cancerous tumor growth.

Femoral head avascular necrosis (AVN) is a debilitating condition that prevents the thighbone from repairing itself at the portion closest to the hip, leading to possible collapse.

In a new study in Arthoplasty Today, a team including Yale Department of Orthopaedics & Rehabilitation’s Daniel Wiznia,…


In a paper published in the journal Arthroplasty Today, Daniel Wiznia, MD, assistant professor of orthopaedics & rehabilitation and co-director of Yale Medicine’s Avascular Necrosis Program, presents a new surgical technique designed to prevent or delay hip collapse in patients with femoral head avascular necrosis (AVN). Thanks to 3D innovations and novel applications of intraoperative navigation technology developed at Yale, Wiznia is leading a multidisciplinary approach to optimizing clinical outcomes.

Femoral AVN, otherwise known as osteonecrosis, is a debilitating condition associated with compromised blood supply to the portion of the thighbone closest to the hip. It particularly impacts the head of the bone. When the small vessels there are injured, the bone can no longer repair itself. Upwards of 20,000 new cases of femoral AVN are diagnosed each year in the United States, and those with the condition face a range of potential complications, such as collapse of the femoral head.

AVN is commonly diagnosed in people between the ages of 30 and 65. For some patients, there are no symptoms, which results in the condition being discovered incidentally. Up to 67 percent of patients with femoral AVN progress to symptomatic disease. A total hip arthroplasty (THA), otherwise known as a total hip replacement, is the current best treatment when the femoral head ultimately collapses. However, THA in younger patients has an increased risk of mechanical failure due to a higher level of physical activity and the length of time that the hip implant will be utilized. Therefore, there is a need for therapeutic strategies that effectively delay and prevent hip collapse, reducing the likelihood of requiring a THA.

Oak Ridge National Laboratory (ORNL) researchers wirelessly charged a light-duty passenger EV at 100 kW with 96% efficiency – a new milestone.

Scientists at the US Department of Energy-funded ORNL wirelessly charged the EV using polyphase electromagnetic coupling coils with rotating magnetic fields.

ORNL’s patented system transferred power to a Hyundai Kona EV across a five-inch air gap using electromagnetic fields, a process similar to the wireless charging of small consumer devices.

Scientists have discovered a universal pattern of brain waves in multiple primate species, including humans.

This pattern of electrical activity is seen in the six layers of tissue that cover the outside of mammals’ brains, known as the cerebral cortex. In primates, higher frequency waves of electrical activity dance through the most superficial layers while slower waves bubble in layers below.

Bellevue, Wash.-based Lumen Orbit, a startup that’s only about three months old, says that it’s closed a $2.4 million pre-seed investment round to launch its plan to put hundreds of satellites in orbit, with the goal of processing data in space before it’s downlinked to customers on Earth.

The investors include Nebular, Caffeinated Capital, Plug & Play, Everywhere Ventures, Tiny.vc, Sterling Road, Pareto Holdings and Foreword Ventures. There are also more than 20 angel investors, including four Sequoia Scouts investing through the Sequoia Scout Fund. “The round was 3x oversubscribed,” Lumen CEO and co-founder Philip Johnston told GeekWire in an email.

Johnston is a former associate at McKinsey & Co. who also co-founded an e-commerce venture called Opontia. Lumen’s other co-founders are chief technology officer Ezra Feilden, whose resume includes engineering experience at Oxford Space Systems and Airbus Defense and Space; and chief engineer Adi Oltean, who worked as a principal software engineer at SpaceX’s Starlink facility in Redmond, Wash.