Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

A new atomistic route to viscosity—even near the glass transition

We rarely think about how liquids flow—why honey is thick, water is thin or how molten plastic moves through machines. But for scientists and engineers, understanding and predicting the viscosity of materials, especially polymers, is essential.

Viscosity governs how substances deform and flow under stress, which in turn affects how they are processed, how they behave in industrial pipelines, in environmental settings, or in consumer products, and how they respond to changing temperatures.

Traditionally, to calculate the of a liquid or polymer melt based on molecular simulations on computers, people rely on a method called the Green–Kubo formalism. It works by tracking how internal stresses fluctuate and decay over time inside a simulated material at thermodynamic equilibrium.

Google rolls out text-to-image model Imagen 4 for free

Google Imagen 4, which is the company’s state-of-the-art text-to-image model, is rolling out for free, but only on AI Studio.

In a blog post, Google announced the rollout of the new Imagen 4 model, but reminded users that it’s free for a “limited time” only.

Unlike the old text-to-image model, Imagen 4 offers significant improvements and takes the text-to-image generation quality to the next level.

Confirmed — Texas imposes new rules on autonomous vehicles and will require official permits before they can be driven on its roads

A blue-and-white Waymo van rolls up to a stoplight near Austin’s South Congress Avenue, sensors spinning in the sun. In three months, that van –and every other driverless car in Texas– will need a brand-new permission slip taped to its dash. Governor Greg Abbott has signed SB 2807, a bill that for the first time gives the Texas Department of Motor Vehicles gate-keeper power over autonomous vehicles.

Starting September 1, 2025, any company that wants to run a truly driver-free car—robo-taxi, delivery pod, or freight hauler—must first snag a state-issued permit. To qualify, operators have to file a safety and compliance plan that spells out:

High explosives in slow motion: Freezing molecules in place shows chemical reactions

Safe and effective high explosives are critical to Lawrence Livermore National Laboratory’s (LLNL) mission of stockpile stewardship. It is relatively simple to study the composition of such material before a detonation or examine the soot-like remnants afterward. But the chemistry in between, which dictates much of the detonation process, evades experimental interrogation as it passes by in a few nanoseconds or less.

In a study published in the Proceedings of the National Academy of Sciences, researchers from SLAC National Accelerator Laboratory and LLNL triggered a slow decomposition of a high explosive and measured the effects on the molecules within it. The work provides the proof of concept for a process that could be extended to examine ultra-fast dynamic chemistry during detonations and illuminates intermediate structures that have never been experimentally seen before.

At the Stanford Synchrotron Radiation Lightsource, the team used X-rays to both trigger the involved in decomposition and measure the results.