Toggle light / dark theme

The immune system deteriorates with age, making COVID-19 particularly deadly in older people—but to date, no clinically available medication addresses this key risk factor. A study published today in Nature shows that an oral drug that reverses multiple aspects of immune aging effectively prevents death in a mouse model of COVID-19, suggesting that the medication could be used to protect the elderly patients who are at greatest risk in the pandemic.

In the study, daily doses of BGE-175 (asapiprant) protected aged mice from a lethal dose of SARS-CoV-2, the virus that causes COVID-19. Ninety percent of mice that received the drug survived, whereas all untreated control mice died. BGE-175 treatment was initiated two days after infection, when the mice were already ill, a time-frame relevant to real-life clinical situations in which patients would receive medication only after becoming symptomatic.

The mouse model used in the study closely mirrored the pathological progression of human COVID-19. The mouse-adapted strain of SARS-CoV-2 generated by the researchers caused a disease that shared many of the hallmarks of human COVID-19: accumulation of fluid in the air sacs of the lungs, extensive infiltration of lung tissue by , and high levels of pro-inflammatory factors called cytokines.

Consciousness is one of the most mysterious and fascinating aspects of human existence. It is also one of the most challenging to study scientifically, as it involves subjective experiences that are not directly observable or measurable. David Chalmers, a professor of philosophy and neural science at NYU mentions in his book The Conscious Mind.

“It may be the largest outstanding obstacle in our quest for a scientific understanding of the universe.”

The real questions are: how can we approach the problem of consciousness from a rigorous and objective perspective? Is there a way to quantify and model the phenomena of awareness, feelings, thoughts, and selfhood? There is no definitive answer to this question, but some researchers have attempted to use mathematical tools and methods to study these phenomena. Self-awareness, for instance, is the ability to perceive and understand the things that make you who you are as an individual, such as your personality, actions, values, beliefs, and even thoughts. Some studies have used the mirror test to assess the development of self-awareness in infants and animals.

So the idea is that intergalactic magnetic fields would tend to cluster electrons and ionized intergalactic hydrogen along their field lines, making those regions of the intergalactic voids just slightly denser than the rest of the void. This would cause dark matter to cluster a bit along the field lines as well. The gravitational effect would be extremely tiny, but over the entire history of the Universe, it would add up. So if primordial magnetic fields did form in the early Universe, tendrils of dark matter should be present along the same lines.

In a recent work in Physical Review Letters the authors argue that this effect would produce minihalos of dark matter. Just as galaxies are surrounded by a halo of dark matter due to gravitational clustering, faint halos of dark matter should exist around primordial magnetic field lines to do the gravitational tug of ionized matter along the field lines.

What’s interesting about this idea is that over time the charged ions and electrons would interact with the primordial magnetic fields and tend to cancel them out. The ions and electrons could even merge to create neutral hydrogen, so in the modern Universe, there would be no trace of these early magnetic fields in regular matter. But the microhalos of dark matter would still exist, and they could be seen through the gravitational lensing of distant light sources. These tendrils of dark matter could be the only evidence remaining of the earliest magnetic fields in the cosmos.