Toggle light / dark theme

Scientists have been making nanoparticles out of DNA strands for two decades, manipulating the bonds that maintain DNA’s double-helical shape to sculpt self-assembling structures that could someday have jaw-dropping medical applications.

The study of DNA , however, has focused mostly on their architecture, turning the genetic code of life into components for fabricating minuscule robots. A pair of Iowa State University researchers in the genetics, development, and cell biology department—professor Eric Henderson and recent doctoral graduate Chang-Yong Oh—hope to change that by showing nanoscale materials made of DNA can convey their built-in genetic instructions.

“So far, most people have been exploring DNA nanoparticles from an engineering perspective. Little attention has been paid to the information held in those DNA strands,” Oh said.

Researchers have created the first functional 3D-printed brain tissue that can develop and form connections in the same way as real human brain tissue.

This remarkable accomplishment by a team at the University of Wisconsin–Madison provides neuroscientists with a new tool for studying communication between brain cells and other parts of the human brain, potentially leading to better ways of treating diseases like Alzheimer’s and Parkinson’s.

“It could change the way we look at stem cell biology, neuroscience, and the pathogenesis of many neurological and psychiatric disorders,” says neuroscientist Su-Chun Zhang, senior author of a new paper describing the research.

A study led by researchers at the Nagoya University Museum in Japan may change how we understand the cultural evolution of Homo sapiens at the time of their dispersal across Eurasia about 50,000 to 40,000 years ago. These findings challenge traditional beliefs about the timing and nature of cultural transitions during this critical period in human history.

A prehistoric structure reminiscent of England’s iconic Stonehenge has been uncovered in Grand Traverse Bay, an arm of Lake Michigan on the western shore of Michigan’s Lower Peninsula.

The findings were found by Dr. Mark Holley, a distinguished professor of underwater archaeology at Northwestern Michigan University.

The picturesque waters of Grand Traverse Bay have long-held maritime history, with dozens of known shipwrecks attesting to the area’s bustling 19th and 20th-century maritime trade routes. Under its serene surface, secrets of a different kind have emerged, capturing the attention of archaeologists and historians.

THURSDAY, Feb. 1, 2024 (HealthDay News) — Drug overdoses resulting in cardiac arrest occur most often among young adults, a new study finds.

People tend to have OD-related cardiac arrests at an average age of 39, compared to an average age of 64 for those suffering cardiac arrests not related to opioids, results show.

“Many communities face ongoing challenges with increases in drug overdoses, which tend to affect a younger, healthier population,” said lead researcher Aditya Shekhar, a medical student at the Icahn School of Medicine at Mount Sinai in New York City.

An international team of researchers has identified the genetic basis and biological processes that influence cancer risk related to alterations in the number of immune cells present in the blood. This is a significant advance in understanding how the immune system can prevent the appearance of tumors.

The study, led by researchers from the Institut Català d’Oncologia (ICO), the Bellvitge Biomedical Research Institute (IDIBELL), the Germans Trias i Pujol Research Institute (IGTP), and the Translational Genomics Research Institute in the United States, has been published in the journal Genome Medicine and represents a significant step towards a better understanding of how alterations in the facilitate the onset of cancer.

The immune system is responsible for maintaining the integrity and function of the body by continuously protecting us from exogenous attacks, such as viruses and endogenous attacks, in this case, cancer. This gives it a central role in inhibiting carcinogenesis, and its disruption may increase the risk of cancer by allowing malignant cells to proliferate.

A research team at the Korea Institute of Science and Technology (KIST) has developed a thermally refractory material that maintains its optical properties even at temperatures of 1,000 degrees Celsius and in strong ultraviolet illumination. The material can be used in various applications ranging from space and aerospace to thermal photovoltaic (TPV) systems.

Thermal radiation is the term used to define the electromagnetic radiation emitted from all matter whose temperature is above absolute zero. The radiation results from the heat generated when charges in the material move and are released in the form of electromagnetic radiation.

Scientists have been working on tapping this radiation as a form of energy source. The heat from facilities such as thermal power generation plants and industrial sites can be repurposed for heating, cooling, and even energy production when suitable thermal refractory materials are available.

Deep learning #AI for skin lesions assessed for assistance to 800 dermatologists and primary care physicians from 39 countries Marked improvement in accuracy but widened bias gap.


In a large-scale study involving 389 board-certified dermatologists and 459 primary-care physicians from 39 countries, the impact of a deep learning-aided decision support system on physicians’ diagnostic accuracy was tested across 46 skin diseases and for both light and dark skin tones.