Toggle light / dark theme

Across mammalian species, brain waves are slower in deep cortical layers, while superficial layers generate faster rhythms.

Throughout the brain’s cortex, neurons are arranged in six distinctive layers, which can be readily seen with a microscope. A team of MIT neuroscientists has now found that these layers also show distinct patterns of electrical activity, which are consistent over many brain regions and across several animal species, including humans.

The researchers found that in the topmost layers, neuron activity is dominated by rapid oscillations known as gamma waves. In the deeper layers, slower oscillations called alpha and beta waves predominate. The universality of these patterns suggests that these oscillations are likely playing an important role across the brain, the researchers say.

New research reveals key factors behind the changing sizes of certain animals over time, challenging traditional evolutionary theories with its findings on species ’ size variations.

The mystery behind why Alaskan horses, cryptodiran turtles, and island lizards shrunk over time may have been solved in a new study.

The new theoretical research proposes that animal size over time depends on two key ecological factors: the intensity of direct competition for resources between species, and the risk of extinction from the environment.

NASA’s Starling mission will test new technologies for autonomous swarm navigation on four CubeSats in low-Earth orbit. Credit: Blue Canyon Technologies/NASA

NASA ’s Starling mission successfully tested autonomous navigation in space using “star tracker” sensors, paving the way for more accurate orbital predictions in the StarFOX experiment.

NASA’s Starling mission accomplished a significant objective for the StarFOX (Starling Formation-Flying Optical Experiment) experiment, a test of autonomous navigation, co-location, and situational awareness in space.

Computer simulations show how mysterious intermediate-mass black holes could form inside stellar clusters.

An international consortium of astronomers, including staff from the Max Planck Institute for Astronomy, has successfully unraveled the intricate formation mechanisms of the elusive intermediate-mass black holes. They could represent the link between their smaller relatives, the stellar black holes, and the supermassive giants that populate the centers of galaxies. This achievement derives from the DRAGON-II simulation project led by the Gran Sasso Science Institute. The scientists involved in this study computed the complex interactions of stars, stellar black holes, and physical processes inside dense stellar clusters, demonstrating that black holes of up to a few hundred solar masses can emerge in those environments.

The Cradle of Black Holes.

One of the fundamental and timeless questions of life concerns the mechanics of its inception. Take human development, for example: how do individual cells come together to form complex structures like skin, muscles, bones, or even a brain, a finger, or a spine?

Although the answers to such questions remain unknown, one line of scientific inquiry lies in understanding gastrulation — the stage at which embryo cells develop from a single layer to a multidimensional structure with a main body axis. In humans, gastrulation happens around 14 days after conception.

It’s not possible to study human embryos at this stage, so researchers at the University of California San Diego, the University of Dundee (UK), and Harvard University were able to study gastrulation in chick embryos, which have many similarities to human embryos at this stage.

Columbia University researchers have synthesized the first 2D heavy fermion material, CeSiI, a breakthrough in material science. This new material, easier to manipulate than traditional 3D heavy fermion compounds, opens up new possibilities in understanding quantum phenomena, including superconductivity. Credit: SciTechDaily.com.

Columbia University ’s creation of CeSiI, the first 2D heavy fermion material, marks a significant advancement in quantum material science. This development paves the way for new research into quantum phenomena and the design of innovative materials.

Researchers at Columbia University have successfully synthesized the first 2D heavy fermion material. They introduce the new material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), in a research article published today (January 17) in the scientific journal Nature.

Individuals with personality traits such as conscientiousness, extraversion, and positive affect are less likely to be diagnosed with dementia than those with neuroticism and negative affect, according to a new analysis by researchers at the University of California, Davis, and Northwestern University. The difference was not linked to physical damage to brain tissue found in dementia patients, but more likely to how certain personality traits help people navigate dementia-related impairments.

The work was recently published in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association.

Previous studies have tried to establish links between personality traits and dementia, but these were mostly small and represented only specific populations, said Emorie Beck, assistant professor of psychology at UC Davis and first author on the paper.

A new study suggests different species may rely on a shared principle for neural network formation.

In all species, brain function relies on an intricate network of connections that allows neurons to send information back and forth between one another, commanding thought and physical activity. But within those networks a small number of neurons share much stronger connections to one another than all the others. These abnormally strong connections—known as “heavy tailed” based on the shape of their distribution—are thought to play an outsized role in brain function.

Research on Neural Network Connections.

This experimental milestone allows for the preservation of quantum information even when entanglement is fragile.

For the first time, researchers from the Structured Light Laboratory (School of Physics) at the University of the Witwatersrand in South Africa, led by Professor Andrew Forbes, in collaboration with string theorist Robert de Mello Koch from Huzhou University in China (previously from Wits University), have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

“We achieved this experimental milestone by entangling two identical photons and customizing their shared wave-function in such a way that their topology or structure becomes apparent only when the photons are treated as a unified entity,” explains lead author, Pedro Ornelas, an MSc student in the structured light laboratory.

When large stars or celestial bodies explode near Earth, their debris can reach our solar system. Evidence of these cosmic events is found on Earth and the Moon, detectable through accelerator mass spectrometry (AMS). An overview of this exciting research was recently published in the scientific journal Annual Review of Nuclear and Particle Science by Prof. Anton Wallner of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), who soon plans to decisively advance this promising branch of research with the new, ultrasensitive AMS facility “HAMSTER.”

In their paper, HZDR physicist Anton Wallner and colleague Prof. Brian D. Fields from the University of Illinois in Urbana, USA, provide an overview of near-Earth cosmic explosions with a particular focus on events that occurred three and, respectively, seven million years ago.

“Fortunately, these events were still far enough away, so they probably did not significantly impact the Earth’s climate or have major effects on the biosphere. However, things get really uncomfortable when cosmic explosions occur at a distance of 30 light-years or less,” Wallner explains. Converted into the astrophysical unit parsec, this corresponds to less than eight to ten parsecs.