Toggle light / dark theme

Aging is a common phenomenon among organisms, however, lifespan tends to vary across different species to a significant extent among vertebrates themselves. Aging occurs due to the gradual increase in DNA damage, disruption of cellular organelles, deregulation of protein function, disrupted metabolism and oxidative stress [1].

Longevity. Technology: The differences in lifespan are driven by trade-offs and evolutionary trajectories in the genomes of organisms. Age-specific selection also impacts allele (variations of a gene) frequencies in a population. This in turn impacts environment-specific mortality risk and disease susceptibility. Moreover, mutational processes are influenced by life history and age in both somatic and germline cells.

Now, a new review published in Trends in Genetics discusses recent advances in the evolution of aging at population, organismal and cellular scales.

Biomedical engineers at Duke University have demonstrated that one of the most dangerous mutations found in skin cancers might moonlight as a pathway to mending a broken heart.

The genetic mutation in the protein BRAF, a part of the MAPK signaling pathway that can promote cell division, is one of the most common and most aggressive found in melanoma patients. In a new study, researchers show that introducing this mutation to rat heart tissue grown in a laboratory can induce growth.

Repairing after a is the “holy grail” of heart research, complicated by the fact that heart tissue does not regenerate on its own. One potential strategy would be to persuade to divide by safely delivering a therapeutic gene to patients and fully controlling its activity in the heart.

A radical theory that consistently unifies gravity and quantum mechanics while preserving Einstein’s classical concept of spacetime is announced today in two papers published simultaneously by UCL (University College London) physicists.

Modern physics is founded upon two pillars: quantum theory on the one hand, which governs the smallest particles in the universe, and Einstein’s theory of general relativity on the other, which explains gravity through the bending of spacetime. But these two theories are in contradiction with each other and a reconciliation has remained elusive for over a century.

The prevailing assumption has been that Einstein’s theory of gravity must be modified, or “quantised”, in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity.

Chinese scientists have opened the deepest and largest underground lab in the world.

The newly expanded facility, located around 7,800 feet below the Jinping Mountains, will allow scientists to study dark matter, the mysterious substance that’s believed to account for more than 80 percent of the mass in the universe.

While scientists believe it’s the “glue” that holds the structures of the universe together, we have yet to directly observe it, since it’s thought to be unable to interact with other matter or reflect or absorb light.