Toggle light / dark theme

Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons.


Neurons intricately communicate and respond to stimuli within a vast network, orchestrating essential functions from basic bodily processes to complex thoughts. Traditional neuroscience methods, relying on in vivo electrophysiology (within a living organism), often have difficulty addressing the complexity of the brain as a whole.

An alternative approach involves extracting cells from the organism and conducting studies on a culture dish instead (in vitro), providing researchers with enhanced control and precision in measuring neural processes.

In a new study featured in Advanced Science, researchers unveil a cost-effective, open-source in vitro system for interfacing with neurons, offering a more accessible avenue for researchers interested in neural interactions.

Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the fusion plasma.

Plasma, the fourth state of matter, is a hot gas made of electrically charged particles. Scientists at the Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are working on solutions to efficiently harness the power of fusion to offer a cleaner alternative to fossil fuels, often using devices called tokamaks, which confine plasma using magnetic fields.

“The purpose of these devices is to confine the energy,” said Dennis Boyle, a staff research physicist at PPPL. “If you had much better energy confinement, you could make the machines smaller and less expensive. That would make the whole thing a lot more practical, and cost-effective so that governments and industry want to invest more in it.”

In this video, we recount an incident that occurred at OpenAI while researchers were trying to finetune GPT-2 to be as helpful and ethical as possible. It’s narrated that inadvertently flipping a single minus sign led GPT-2 to become the embodiment of a well-known cardinal sin.

#ai #aisafety #alignment.

▀▀▀▀▀▀▀▀▀SOURCES \& READINGS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

OpenAI blog post: https://openai.com/research/fine-tuni

Year 2018 Age related symptoms may be even more simple to reverse by recharging the mitochondria then eventually we can have genetically engineered mitochondria to run longer so the cycles of the human body could run indefinitely.


Singh, B., Schoeb, T.R., Bajpai, P. et al. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function. Cell Death Dis 9, 735 (2018). https://doi.org/10.1038/s41419-018-0765-9

Download citation.

With the insertion of a little math, Sandia National Laboratories researchers have shown that neuromorphic computers, which synthetically replicate the brain’s logic, can solve more complex problems than those posed by artificial intelligence and may even earn a place in high-performance computing.

The findings, detailed in a recent article in the journal Nature Electronics, show that neuromorphic simulations employing the statistical method called random walks can track X-rays passing through bone and soft tissue, disease passing through a population, information flowing through social networks and the movements of financial markets, among other uses, said Sandia theoretical neuroscientist and lead researcher James Bradley Aimone.

“Basically, we have shown that neuromorphic hardware can yield computational advantages relevant to many applications, not just artificial intelligence to which it’s obviously kin,” said Aimone. “Newly discovered applications range from radiation transport and molecular simulations to computational finance, biology modeling and particle physics.”

What if AI could tell us we have cancer before we show a single symptom? Steve Quake, head of science at the Chan Zuckerberg Initiative, explains how AI can revolutionize science.

Up next, Harvard professor debunks the biggest exercise myths ► • Harvard professor debunks the biggest…

AI can help us understand complex systems like our cells. better. The Chan Zuckerberg Initiative is committed to building one of the world’s biggest non-profit life science AI computing clusters to help build digital models of what goes wrong in cells when we get diseases like diabetes or cancer and more.

Read the video transcript ► https://bigthink.com/sponsored/future

NASA’s Moon to Mars Architecture has been instrumental in developing, designing, and executing the long-term goals of establishing not only a permanent human presence on the Moon but sending humans to Mars, someday. Today, NASA announced the results from the recent 2023 Moon to Mars Architecture Concept Review, which outlines key objectives, strategies, and key decisions in establishing a human presence on Mars in the future.

The Concept Review discussed in detail the architecture objectives and segments for not only returning humans to the Moon but establishing a long-term presence there through testing new technologies, systems, and equipment that would be used on an eventual human mission to Mars. the Moon to Mars Objectives cover a myriad of goals, including lunar and planetary science, heliophysics, human and biological science, physics and physical sciences, science enabling, applied science, lunar infrastructure, Mars infrastructure, transportation and habitation, and operations.

“Over the last year we’ve been able to refine our process for Moon to Mars architecture concept development to unify the agency,” Nujoud Merancy, who is the Deputy Associate Administrator for Strategy & Architecture for NASA’s Exploration Systems Development Mission Directorate (ESDMD), said in a statement. “Our process in the coming months will focus on addressing gaps in the architecture and further reviewing the decisions the agency needs to make to successfully mount crewed Mars missions.”

A Whole New World

Scientists have already found hundreds of exotic amino acids. AI models such as AlphaFold or RoseTTAFold, and their variations, are likely to spawn even more. Finding carriers and “glue” proteins that match has always been a roadblock.

The new study establishes a method to speed up the search for new designer proteins with unusual properties. For now, the method can only incorporate four synthetic amino acids. But scientists are already envisioning uses for them.

“The key take-home from this study is that small electric aircraft can have a notably lower climate impact – up to 60 percent less – and other types of environmental impacts than equivalent fossil-fueled aircraft,” said Dr. Rickard Arvidsson.


In a time when electric cars are increasing in number around the world and contributing to a greener future, can electric aircraft do the same? This is what a recent study published in The International Journal of Life Cycle Assessment hopes to address as a team of researchers from the Chalmers Institute of Technology in Sweden investigated the environmental impact of an electric aircraft versus a fossil fuel-based counterpart. This study holds the potential to help better understand the pros and cons of electric aircraft while underscoring their environmental impact for both the short-and long-term.

For the study the researchers conducted a life cycle assessment of a “Pipistrel Alpha Electro” aircraft and a fossil fuel-based aircraft to determine which was more environmentally friendly. The Alpha Electro’s structure consisted of an approximately 10-meter (33-feet) wingspan and weighs 550 kg (1212 pounds) at full weight. It was powered by a 21 kWh NMC (nickel-manganese cobalt) lithium-ion battery, resulting in a 60 kW engine output. The fossil fuel-based aircraft was comprised of the same structure as the Alpha Electro aside from the gas engine and fuel tank. The goal of the study was to ascertain when the Alpha Electro obtains a “break-even” point with its gas-powered counterpart in terms of the overall environmental impact.