Toggle light / dark theme

When you push a button to open a garage door, it doesn’t open every garage door in the neighborhood. That’s because the opener and the door are communicating using a specific microwave frequency, a frequency no other nearby door is using.

Researchers from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, the University of Chicago, the University of Iowa and Tohoku University in Japan have begun to develop devices that could use the same principles — sending signals through magnets instead of through the air — to connect individual qubits across a chip, as reported in a new paper published in the Proceedings of the National Academy of Sciences.

“This is a proof of concept, at room temperature, of a scalable, robust quantum technology that uses conventional materials,” said David Awschalom, the Liew Family professor in molecular engineering and physics at the University of Chicago’s Pritzker School of Molecular Engineering; the director of the Chicago Quantum Exchange; the director of Q-NEXT, a DOE National Quantum Information Science Research Center hosted at Argonne; and the principal investigator of the project. “The beauty of this experiment is in its simplicity and its use of well-established technology to engineer and ultimately entangle quantum devices.

For the past year and a half, the James Webb Space Telescope has delivered astonishing images of distant galaxies formed not long after the Big Bang, giving scientists their first glimpses of the infant universe. Now, a group of astrophysicists has upped the ante: Find the tiniest, brightest galaxies near the beginning of time itself, or scientists will have to totally rethink their theories about dark matter.

The team, led by UCLA astrophysicists, ran simulations that track the formation of small galaxies after the Big Bang and included, for the first time, previously neglected interactions between gas and dark matter. They found that the galaxies created are very tiny, much brighter, and form more quickly than they do in typical simulations that don’‘t take these interactions into account, instead revealing much fainter galaxies.

Small galaxies, also called , are present throughout the universe, and are often thought to represent the earliest type of galaxy. Small galaxies are thus especially interesting to scientists studying the origins of the universe. But the small galaxies they find don’t always match what they think they should find. Those closest to the Milky Way spin quicker or are not as dense as in simulations, indicating that the models might have omitted something, such as these gas-dark matter interactions.

Oxford PV, a spin-off from the University of Oxford, says it’s achieved the world record for the most efficient solar panel.

In collaboration with Germany’s Fraunhofer Institute for Solar Energy Systems, the company says its solar panel achieved 25% conversion efficiency – the percentage of solar energy shining on a panel converted into electricity. That’s a big deal compared to the more typical 16–24% in commercial solar panels.

Oxford PV’s secret sauce is perovskite-on-silicon tandem solar cells, which could theoretically hit over 43% efficiency, leaving traditional silicon solar cells with a theoretical limit of less than 30% in the dust. Its record-setting panel cranked out 421 watts over an area of 1.68 square meters. The researchers used standard mass production gear and optimized it for the tandem technology.

Pop artist Grimes has teamed up with Silicon Valley startup Curio to create a stuffed toy rocket that can understand and talk to kids, using the same AI technology powering ChatGPT.

The background: In April, X user Roon tweeted a prediction that “every last thing in the future will be animated with intelligence,” including children’s teddy bears. The post caught the eye of Grimes, who has three children with X owner Elon Musk.

“This would be great if safe,” Grimes, who was born Claire Boucher, wrote in a reply to Roon’s tweet. “Parenting is so hard, I’d love if my kids were hanging out w smthn equivalent to a culture ship mind in a teddy bear haha that’s prob too much to ask…”