Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Reports in Advances of Physical Sciences

In this paper, the authors propose a three-dimensional time model, arguing that nature itself hints at the need for three temporal dimensions. Why three? Because at three different scales—the quantum world of tiny particles, the realm of everyday physical interactions, and the grand sweep of cosmological evolution—we see patterns that suggest distinct kinds of “temporal flow.” These time layers correspond, intriguingly, to the three generations of fundamental particles in the Standard Model: electrons and their heavier cousins, muons and taus. The model doesn’t just assume these generations—it explains why there are exactly three and even predicts their mass differences using mathematics derived from a “temporal metric.”


This paper introduces a theoretical framework based on three-dimensional time, where the three temporal dimensions emerge from fundamental symmetry requirements. The necessity for exactly three temporal dimensions arises from observed quantum-classical-cosmological transitions that manifest at three distinct scales: Planck-scale quantum phenomena, interaction-scale processes, and cosmological evolution. These temporal scales directly generate three particle generations through eigenvalue equations of the temporal metric, naturally explaining both the number of generations and their mass hierarchy. The framework introduces a metric structure with three temporal and three spatial dimensions, preserving causality and unitarity while extending standard quantum mechanics and field theory.

Astronomers have found the home address for the universe’s ‘missing’ matter

A new landmark study has pinpointed the location of the universe’s “missing” matter, and detected the most distant fast radio burst (FRB) on record. Using FRBs as a guide, astronomers at the Center for Astrophysics | Harvard & Smithsonian (CfA) and Caltech have shown that more than three-quarters of the universe’s ordinary matter has been hiding in the thin gas between galaxies, marking a major step forward in understanding how matter interacts and behaves in the universe.

They’ve used the new data to make the first detailed measurement of ordinary matter distribution across the cosmic web. The research is published in the journal Nature Astronomy.

For decades, scientists have known that at least half of the universe’s ordinary, or —composed primarily of protons—was unaccounted for. Previously, have used techniques including X-ray emission and ultraviolet observations of distant quasars to find hints of vast amounts of this missing mass in the form of very thin, warm gas in between galaxies. Because that matter exists as hot, low-density gas, it was largely invisible to most telescopes, leaving scientists to estimate but not confirm its amount or location.

Atherosclerotic blood vessel cells grow similar to tumors, study reveals

Researchers from the University of Southern Denmark and Odense University Hospital have studied tissue from patients with atherosclerosis. They found that many of the cells in the diseased tissue carried the same genetic alteration and appeared to originate from a single ancestral cell that had divided repeatedly—a pattern otherwise associated with tumor biology.

In several patients, a large proportion of the cells were derived from one single mutated cell that had undergone many rounds of cell division.

“It’s striking how many cells in the tissue share the exact same . In several samples, more than 10% of the cells—hundreds of thousands cells—carried the same alteration. It’s difficult to interpret this as anything other than all these cells originating from a shared ancestral cell that, at some point during disease development, acquired the mutation,” says Lasse Bach Steffensen, Associate Professor at the Department of Molecular Medicine at the University of Southern Denmark.

Sam Altman: The Future of OpenAI, ChatGPT’s Origins, and Building AI Hardware

A fireside with Sam Altman on June 16, 2025 at AI Startup School in San Francisco.

Sam Altman grew up obsessed with technology, broke into the Stanford mainframe as a kid, and dropped out to start his first company before turning 20.

In this conversation, he traces the path from early startup struggles to building OpenAI—sharing what he’s learned about ambition, the weight of responsibility, and how to keep building when the whole world is watching. He opens up about the hardest moments of his career, the limits of personal productivity, and why, in the end, it’s all still about finding people you like working with and doing something that matters.

Chapters (Powered by https://ChapterMe.co)
00:00 – We’re going for AGI
01:25 – Founding OpenAI Against the Odds.
05:00 – GPT-4o & the Future of Reasoning Models.
07:00 – ChatGPT Memory & the ‘Her’ Vision.
10:00 – GPT-5 & the Vision of a Multimodal Supermodel.
11:00 – Robots at Scale.
15:00 – Don’t Build ChatGPT — Build What’s Missing.
17:00 – Elon’s Harsh Email & Building Conviction.
26:00 – One Person’s Leverage in the Next Decade.
32:00 – AI for Science: Sam’s Personal Bet.

New theory proposes time has three dimensions, with space as a secondary effect

Time, not space plus time, might be the single fundamental property in which all physical phenomena occur, according to a new theory by a University of Alaska Fairbanks scientist.

The theory also argues that time comes in three rather than just the single one we experience as continual forward progression. Space emerges as a secondary manifestation.

“These three time dimensions are the primary fabric of everything, like the canvas of a painting,” said associate research professor Gunther Kletetschka at the UAF Geophysical Institute. “Space still exists with its three dimensions, but it’s more like the paint on the canvas rather than the canvas itself.”

Strange Atlantic cold spot linked to century-long slowdown of major ocean current

For more than a century, a patch of cold water south of Greenland has resisted the Atlantic Ocean’s overall warming, fueling debate among scientists. A new study identifies the cause as the long-term weakening of a major ocean circulation system.

Researchers from the University of California, Riverside show that only one explanation fits both observed ocean temperatures and salinity patterns: the Atlantic Meridional Overturning Circulation, or AMOC, is slowing down. This massive current system helps regulate climate by moving warm, salty water northward and cooler water southward at depth.

“People have been asking why this cold spot exists,” said UCR climate scientist Wei Liu, who led the study with doctoral student Kai-Yuan Li. “We found the most likely answer is a weakening AMOC.”