Menu

Blog

Page 1967

May 27, 2023

Fractons as information storage: Not yet tangible, but close

Posted by in categories: energy, mathematics, quantum physics

Excitations in solids can also be represented mathematically as quasiparticles; for example, lattice vibrations that increase with temperature can be well described as phonons. Mathematically, also quasiparticles can be described that have never been observed in a material before. If such “theoretical” quasiparticles have interesting talents, then it is worth taking a closer look. Take fractons, for example.

Fractons are fractions of spin excitations and are not allowed to possess kinetic energy. As a consequence, they are completely stationary and immobile. This makes fractons new candidates for perfectly secure information storage. Especially since they can be moved under special conditions, namely piggyback on another quasiparticle.

“Fractons have emerged from a mathematical extension of quantum electrodynamics, in which electric fields are treated not as vectors but as tensors—completely detached from real materials,” explains Prof. Dr. Johannes Reuther, at the Freie Universität Berlin and at HZB.

May 27, 2023

“Shuttled” Ions Stay Quantum

Posted by in category: quantum physics

Researchers move an individual Mg+ ion more than 100,000 times between different sites in a trapping array without dropping it or ruining its quantum coherence.

May 27, 2023

Predicting When a Material Will Crack

Posted by in category: materials

A combination of two techniques provides warning signs that the stress on a material will lead to failure.

Soft elastomers, such as rubber, plastic, and silicone, are used in thousands of products, such as gaskets, hoses, and inflatable rafts, but under stress, these materials tend to crack abruptly, without warning. Now, using an improved method to image structural changes in a sample under stress, researchers have shown that a subtle pattern of molecular motions at the surface of the material occurs several minutes before a final failure [1]. With development, they believe the technique may help engineers monitor materials while in use and detect failures well before they happen. The researchers also showed that their approach works for some more brittle polymer materials.

When studying the mechanical failure of a material, researchers often experiment by cutting a small notch into a thin sheet of the material and applying a slowly increasing force that pulls the notch apart. Eventually, a crack will grow and spread rapidly from the notch. Materials scientist Costantino Creton of Paris Sciences and Letters University says that over the past few years, such experiments have led to two general findings for elastomers. First, by embedding light-emitting, force-sensitive molecules into test materials, researchers have shown that, prior to crack initiation, irreversible molecular-bond damage accumulates very close to the initial notch (within 0.1 mm). Second, using sensitive spectroscopy techniques, other studies have found signs of unusual microscopic rearrangements of the polymer molecules occurring over larger regions of the material just prior to failure.

May 27, 2023

Static Electrons in Flat-Band Nonequilibrium Superconductors

Posted by in categories: energy, materials

Single electrons stay stationary in superconductors with “flat-band” electronic structures, which could lead to low-energy-consumption devices made from such materials.

In 2018, researchers discovered that two layers of graphene, stacked and twisted at a specific angle, could exhibit superconductivity. Theorists have determined that the electronic structure of such a twisted material approximately resembles a “flat band,” which means that the energy of the materials’ free electrons remains constant regardless of the electrons’ momenta. This phenomenon inspired a flurry of work on systems that exhibit flat-band superconductivity. However, most of the research has focused on how such systems behave under equilibrium conditions. Now Päivi Törmä of Aalto University in Finland and her colleagues have probed the behavior of superconducting flat-band systems under nonequilibrium conditions [1]. The findings could help in the design of superconducting devices with low energy consumption.

Törmä and her colleagues considered an idealized flat-band material subjected to an applied voltage, making it a nonequilibrium system. Their predictions indicate that in this nonequilibrium system the paired and unpaired electrons follow the same behavior patterns as those in an equilibrium system: unpaired electrons form stationary quasiparticles and paired electrons flow with zero resistance. Additionally, in both types of systems the flat band helps the electrons form the bound pairs required for superconductivity.

May 27, 2023

ChatGPT for iPhone now available in 46 countries and counting [U]

Posted by in categories: mobile phones, robotics/AI

ChatGPT for iPhone launched in the US last week, with OpenAI promising that it would come to more countries “in the coming weeks.”

The next phase in the rollout has now happened earlier than expected, with 11 more countries added on Wednesday, and a further 35 today …

While you could of course access the ChatGPT website on your iPhone, an iPhone app makes it more convenient – especially as the app is free, and has no ads.

May 27, 2023

This new supernova, the brightest in years, could help astronomers forecast future star explosions

Posted by in categories: cosmology, futurism

A new supernova has turned into the most watched phenomenon in the May night sky. The close proximity of the stellar explosion and the vast amount of observations gathered since the discovery promise to advance astronomers’ understanding of stellar evolution and could even lead to major advances in supernova forecasting.

Supernovas are powerful explosions in which very massive stars, at least eight times more massive than our sun, die when they use up all the hydrogen fuel in their cores. The discovery of this latest exploding star, known officially as 2023ifx, was a serendipitous one.

May 27, 2023

Kratos to deploy more autonomous platooning trucks in Midwest

Posted by in categories: robotics/AI, space

https://youtube.com/watch?v=N-GkbFXq3Ts

Platooning technology is allowing lower-cost entry to the autonomous space, where its reach includes the existing truck market rather than solely on “customers who can afford to buy new trucks,” according to Kratos.

“Couple that with the increasing driver shortage and the potential multiplies,” Steve Fendley, president of Kratos Unmanned Systems Division, said in a statement.

Continue reading “Kratos to deploy more autonomous platooning trucks in Midwest” »

May 27, 2023

Elon Musk’s Neuralink Says It Has FDA Approval for Study of Brain Implants in Humans

Posted by in categories: Elon Musk, neuroscience

The startup tested its technology on primates for several years.

May 27, 2023

This Rocket-powered Plane Could Fly From New York to Sydney in Less Than 90 Minutes

Posted by in category: space

Supersonic airplanes are old news. But supersonic airplanes that can fly nine times the speed of sound? That’s something else.

Texas-based company Venus Aerospace is designing a passenger plane called Stargazer that’s capable of flying at Mach 9, or approximately 6,900 miles per hour — which means you’d be able to fly from New York to Sydney in less than 90 minutes. By comparison, the Concorde, which was the only supersonic passenger plane ever to fly commercially, flew at about Mach 2, or more than 1,500 miles per hour.

May 27, 2023

Drones go out on shark patrol

Posted by in category: drones

Drones are being used to spot sharks near beaches, so lifeguards can clear swimmers away.