Toggle light / dark theme

RFID tags are commonly used to verify the authenticity of products, but they have some drawbacks. They are relatively large, expensive, and vulnerable to counterfeiting. A team of MIT engineers has developed a new type of ID tag that overcomes these limitations by using terahertz waves, which are smaller and faster than radio waves.

The new tag is a cryptographic chip several times smaller and cheaper than RFID tags. It also offers improved security, using the unique pattern of metal particles in the glue that attaches the tag to the item as a fingerprint. This way, the authentication system will detect tampering if someone tries to peel off the tag and stick it to a fake item.

Odysseus is one of the first landers to participate in NASA’s Commercial Lunar Payload Services (CLPS) program, which aims to deliver science and technology payloads to the lunar surface using commercial partners. The CLPS program is a key component of NASA’s Artemis program, which plans to establish a sustainable human presence on the moon by the end of the 2020s.

Intuitive Machines successfully transmitted its first IM-1 mission images to Earth on February 16, 2024. The images were captured shortly after separation from @SpaceX’s second stage on Intuitive Machines’ first journey to the Moon under @NASA’s CLPS initiative. pic.twitter.com/9LccL6q5tF — Intuitive Machines (@Int_Machines) February 17, 2024

Odysseus is carrying six NASA experiments and technology demonstrations, along with six private payloads, on its current IM-1 mission. The lander is expected to touch the moon on February 22, near the lunar equator.

Researchers at the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) and their collaborators have synthesized two new isotopes—osmium-160 and tungsten-156—which sheds new light on nuclear structures and hints that lead-164 could be a doubly magic nucleus with increased stability.

The study was published in Physical Review Letters and highlighted as an Editors’ Suggestion.

“Magic numbers” of protons and can make an particularly stable. The traditional magic numbers include 8, 20, 28, 50, 82 and 126. In previous studies, researchers discovered the vanishing of traditional magic numbers and the emergence of new magic numbers on the neutron-rich side of the chart of nuclides.

An often-overlooked water plant that can double its biomass in two days, capture nitrogen from the air—making it a valuable green fertilizer—and be fed to poultry and livestock could serve as life-saving food for humans in the event of a catastrophe or disaster, a new study led by Penn State researchers suggests.

Native to the eastern U.S., the plant, azolla caroliniana Willd—commonly known as Carolina azolla—also could ease in the near future, according to findings recently published in Food Science & Nutrition. The researchers found that the Carolina strain of azolla is more digestible and nutritious for humans than azolla varieties that grow in the wild and also are cultivated in Asia and Africa for livestock feed.

The study, which was led by Daniel Winstead, a research assistant in the labs of Michael Jacobson, professor of ecosystem science and management, and Francesco Di Gioia, assistant professor of vegetable crop science, is part of a larger interdisciplinary research project called Food Resilience in the Face of Catastrophic Global Events conducted in the College of Agricultural Sciences.

Researchers from Ohio State University have developed an innovative method to capture carbon dioxide (CO2) directly from the atmosphere. Powered by geothermal energy, the team’s method poses a climate-friendly alternative to traditional carbon capture technologies. It highlights the synergy between Direct Air Carbon Dioxide Capture (DACC) technologies and renewable energies from beneath the Earth’s surface.

The approach, named Direct Air CO2 Capture with CO2 Utilization and Storage (DACCUS), promises a significant decrease in atmospheric CO2 levels, a major contributor to global warming.

Climate change primarily results from increased CO2 levels in the Earth’s atmosphere, largely due to human activities like burning fossil fuels for heat, electricity, and transportation.