Toggle light / dark theme

Researchers have developed a revolutionary biosensor using terahertz (THz) waves that can detect skin cancer with exceptional sensitivity, potentially paving the way for earlier and easier diagnoses. Published in IEEE Transactions on Biomedical Engineering, the study presents a significant advancement in early cancer detection, thanks to the collaboration of multidisciplinary teams from Queen Mary University of London and the University of Glasgow.

“Traditional methods for detecting skin cancer often involve expensive, time-consuming, CT, PET scans and invasive higher frequencies technologies,” explains Dr. Shohreh Nourinovin, Postdoctoral Research Associate at Queen Mary’s School of Electronic Engineering and Computer Science, and the study’s first author. “Our biosensor offers a non-invasive and highly efficient solution, leveraging the unique properties of THz waves—a type of radiation with lower energy than X-rays, thus safe for humans—to detect subtle changes in cell characteristics.”

The key innovation lies in the biosensor’s design. Featuring tiny, asymmetric resonators on a flexible substrate, it can detect subtle changes in the properties of cells. Unlike traditional methods that rely solely on , this device analyzes a combination of parameters, including , transmission magnitude, and a value called “full width at half maximum” (FWHM). This comprehensive approach provides a richer picture of the tissue, allowing for more accurate differentiation between healthy and cancerous cells and to measure malignancy degree of the tissue.

Neuroresearchers at Macquarie University in Australia say they have developed a single-dose genetic medicine that has halted the progression of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in mice. The team, which believes its approach may even offer the potential to reverse some of the effects of the fatal diseases, thinks it may also hold opportunities for treating more common forms of dementia, such as Alzheimer’s disease.

The new treatment, dubbed CTx1000, targets pathological build-ups of the protein TDP-43 in cells in the brain and spinal cord, which has been associated with ALS, FTD, and other forms of dementia. The scientists, led by Lars Ittner, PhD, hope to see CTx1000 begin human clinical trials in as little as two years. Their study “Targeting 14–3-3?-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice” appears in Neuron.

“Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14–3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling,” wrote the investigators.

Robots may seem like a completely modern phenomenon, but the idea of creating artificial beings is by no means new. In this video we’ll look at the ancient predecessors of our modern robots, and see their development from a concept in mythology, to the earliest simple devices, and finally to full-fledged self-moving statues.

→ CLIPS USED

Metropolis (1927)

Sophia the Robot Gives a Glimpse of What’s to Come in 2020

The continuous improvement of circuits and electronic components is vital for the development of new technologies with enhanced capabilities and unique characteristics. In recent years, most electronics engineers have been specifically focusing on reducing the size of transistors, while retaining a low power consumption.

Researchers at University of Science and Technology Beijing recently introduced a new pseudo-CMOS architecture based on self-biased molybdenum disulfide transistors. This architecture, outlined in Nature Electronics, could be used to create highly performing inverters, gate circuits, and other device components.

“The development of integrated circuits (ICs) for efficient computing with low power is a global hot topic and a focus of international competition in cutting-edge fields,” Zheng Zhang, co-author of the paper, told Tech Xplore.

A European Space Agency satellite is expected to reenter and largely burn up in Earth’s atmosphere on Wednesday morning.

The agency’s Space Debris Office, along with an international surveillance network, is monitoring and tracking the Earth-observing ERS-2 satellite, which is predicted to make its reentry at 3:53 p.m. ET Wednesday, with a 7.5-hour window of uncertainty. The ESA is also providing live updates on its website.

“As the spacecraft’s reentry is ‘natural’, without the possibility to perform manoeuvers, it is impossible to know exactly where and when it will reenter the atmosphere and begin to burn up,” according to a statement from the agency.