Toggle light / dark theme

Researchers at Trinity College Dublin, working together with the Royal College of Surgeons in Ireland (RCSI), have developed special fluorescent, color-changing dyes that, for the first time, can be used to simultaneously visualize multiple distinct biological environments using only one singular dye.

When these dyes are encapsulated in delivery vessels, like those used in technologies like the COVID-19 vaccines, they “switch on” and give out light via a process called “aggregation-induced emission” (AIE). Soon after delivery into the cells their light “switches off” before “switching on” again once the cells shuttle the dyes into cellular lipid droplets.

Year 2021 face_with_colon_three


Because they lack an atmosphere, the moon and other airless bodies such as asteroids can build up an electric field through direct exposure to the sun and surrounding plasma. On the moon, this surface charge is strong enough to levitate dust more than 1 meter above the ground, much the way static electricity can cause a person’s hair to stand on end.

Engineers at NASA and elsewhere have recently proposed harnessing this natural surface charge to levitate a glider with wings made of Mylar, a material that naturally holds the same charge as surfaces on airless bodies. They reasoned that the similarly charged surfaces should repel each other, with a force that lofts the glider off the ground. But such a design would likely be limited to small asteroids, as larger planetary bodies would have a stronger, counteracting gravitational pull.

The MIT team’s levitating rover could potentially get around this size limitation. The concept, which resembles a retro-style, disc-shaped flying saucer, uses tiny ion beams to both charge up the vehicle and boost the surface’s natural charge. The overall effect is designed to generate a relatively large repulsive force between the vehicle and the ground, in a way that requires very little power. In an initial feasibility study, the researchers show that such an ion boost should be strong enough to levitate a small, 2-pound vehicle on the moon and large asteroids like Psyche.

A team of MIT researchers has figured out a way to create a supercapacitor simply by mixing cement, the binding ingredient of concrete, and a fine charcoal product called carbon black together with water.

Better yet, this mixture could allow a home to store a full day’s worth of energy in its foundation, potentially paving the way to an efficient renewable energy storage solution that doesn’t rely on mining rare Earth metals.

Roads made up of the material could even power electric cars wirelessly, the researchers say, or windmills could store their generated energy in their base.

North Carolina State University researchers have discovered a new welding method for composite metal foam (CMF), preserving its light, strong, and thermally insulating properties, vital for numerous applications.

Researchers at North Carolina State University have now identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures.

Characteristics and Challenges of CMF.

Supernovae–stellar explosions as bright as an entire galaxy–have fascinated us since time immemorial. Yet, there are more hydrogen-poor supernovae than astrophysicists can explain. Now, a new Assistant Professor at the Institute of Science and Technology Austria (ISTA) has played a pivotal role in identifying the missing precursor star population. The results, now published in Science, go back to a conversation the involved professors had many years ago as junior scientists.

The Enigma of Hydrogen-Poor Supernovae

Some stars do not simply die down, but explode in a stellar blast that could outshine entire galaxies. These cosmic phenomena, called supernovae, spread light, elements, energy, and radiation in space and send galactic shock waves that could compress gas clouds and generate new stars. In other words, supernovae shape our universe. Among these, hydrogen-poor supernovae from exploding massive stars have long puzzled astrophysicists. The reason: scientists have not been able to put their finger on their precursor stars. It is almost as if these supernovae appeared out of nowhere.

A Tesla driver using the new Full Self-Driving (FSD) Beta v12 software managed to showcase a new behavior: FSD Beta autonomously looking for a parking spot.

The Tesla v12 software update is expected to introduce what CEO Elon Musk has been calling “end-to-end neural nets”. The biggest difference with previous FSD updates is that the vehicle’s controls would now be handled by neural nets rather than being coded by programmers.

It is being touted as the difference maker.

Figure AI eyes a $1.9 billion valuation as Microsoft and OpenAI show interest in its life-saving robots

Figure AI, a startup developing human-like robots, is in talks to secure up to $500 million in a funding round potentially led by Microsoft and OpenAI.

The company is looking to attract additional investors, with Microsoft potentially investing $95 million and OpenAI contributing $5 million. The deal could value Figure AI at $1.9 billion before pre-financing.