Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Dr. Thomas Ehmer, Ph.D. — Merck KGaA Darmstadt, Germany — Quantum Computing Innovation In Pharma

Quantum Computing Innovation In Pharma — Dr. Thomas Ehmer, Ph.D. — Merck KGaA, Darmstadt, Germany


Dr. Thomas Ehmer, Ph.D. (https://www.linkedin.com/in/tehmer/) is a seasoned technology strategist with over two decades of experience in IT innovation, business development, and R&D within the pharmaceutical industry, and co-founder of the Quantum Interest Group, at Merck KGaA Darmstadt, Germany (https://www.emdgroup.com/en).

Dr. Ehmer currently is in the Sector Data Office — AI Governance and Innovation Incubator at Merck KGaA Darmstadt, Germany, where he scouts emerging and disruptive technologies, demonstrating their potential value for R&D applications, with a focus on quantum technologies.

Throughout his career at Merck KGaA Darmstadt, Germany, Dr. Ehmer has played a pivotal role in shaping IT strategy, business process optimization, and digital transformation across the entire pharmaceutical value chain, currently focusing on transparent AI and how and where emerging technology can help patients live a better life. His expertise spans technology scouting, business analysis, and IT program leadership, having successfully driven major global projects.

Beyond his corporate career, Dr. Ehmer is an active private seed investor and has contributed to quantum computing research and applications in drug discovery, authoring publications on the potential of quantum computing and machine learning in pharmaceutical R&D (https://onlinelibrary.wiley.com/doi/10.1002/9783527840748.ch26).

Looking to study neurological conditions, researchers produce over 400 different types of nerve cells

Nerve cells are not just nerve cells. Depending on how finely we distinguish, there are several hundred to several thousand different types of nerve cells in the human brain, according to the latest calculations. These cell types vary in their function, in the number and length of their cellular appendages, and in their interconnections. They emit different neurotransmitters into our synapses, and depending on the region of the brain—for example, the cerebral cortex or the midbrain—different cell types are active.

When scientists produced from in Petri dishes for their experiments in the past, it was not possible to take their vast diversity into account. Until now, researchers had only developed procedures for growing a few dozen different types of nerve cell in vitro. They achieved this using or by adding signaling molecules to activate particular cellular signaling pathways. However, they never got close to achieving the diversity of hundreds or thousands of different nerve cell types that actually exist.

“Neurons derived from stem cells are frequently used to study diseases. But up to now, researchers have often ignored which precise types of neuron they are working with,” says Barbara Treutlein, Professor at the Department of Biosystems Science and Engineering at ETH Zurich in Basel.

Illuminated sugars show how microbes eat the ocean’s carbon

A team of chemists, microbiologists and ecologists has designed a molecular probe (a molecule designed to detect proteins or DNA inside an organism, for example) that lights up when a sugar is consumed.

In the Journal of the American Chemical Society, they now describe how the probe helps researchers study the microscopic tug-of-war between algae and microbial degraders in the ocean.

“Sugars are ubiquitous in , yet it’s still unclear whether or how can degrade them all,” says Jan-Hendrik Hehemann from the Max Planck Institute for Marine Microbiology and the MARUM—Center for Marine Environmental Sciences, both located in Bremen.

Rewriting a scientific law to unlock the potential of energy, sensing and more

A research team from Penn State has broken a 165-year-old law of thermal radiation with unprecedented strength, setting the stage for more efficient energy harvesting, heat transfer and infrared sensing. Their results, currently available online, are slated to be published in Physical Review Letters on June 23.

New wearable device that mimics CT scans delivers continuous monitoring for heart and lung patients

Researchers have developed a first-of-its-kind wearable device capable of continuously scanning the lungs and heart of hospital patients while they rest in bed – offering a revolutionary alternative to CT scans.

The belt-like device, attached around a patient’s chest, uses ultrasound and works like a CT scanner. Rather than taking an isolated snapshot, it can produce a series of dynamic, high-resolution images of the heart, lungs and internal organs over time, giving doctors deeper insight into a patient’s condition. The device can be worn in bed and also reduces the need for repeated trips to radiology or exposure to doses of ionising radiation.

The breakthrough device has been developed at the University of Bath in collaboration with Polish technology company Netrix and is detailed in a recent publication in IEEE Transactions on Instrumentation and Measurement.


Groundbreaking sensor technology promises safer, real-time monitoring for hospitalised cardiothoracic patients.

Breakthrough by Shanghai doctors uses stem cells to cure diabetes

Doctors in Shanghai have, for the first time in the world, cured a patient’s diabetes through the transplantation of pancreatic cells derived from stem cells.

The 59-year-old man, who had Type 2 diabetes for 25 years, has been completely weaned off insulin for 33 months, Shanghai Changzheng Hospital announced on May 7.

A paper about the medical breakthrough, achieved after more than a decade of endeavor by a team of doctors at the hospital, was published on the website of the journal Cell Discovery on April 30.

It is the first reported instance in the world of a case of diabetes with severely impaired pancreatic islet function being cured via stem cell-derived autologous, regenerative islet transplantation, the hospital said. The most common pancreatic islet cells produce insulin.

(Circa 2024)

Alex M. Vikoulov

Big News! My New Audiobook The Intelligence Supernova is Now Live! 🎧 I’m thrilled to announce the release of the audiobook edition of The Intelligence Supernova: Essays on Cybernetic Transhumanism, the Simulation Singularity & the Syntellect Emergence. This project has been incredibly close to my heart—it dives deep into the unfolding convergence of advanced AI, consciousness, and our collective evolution beyond biology. In this book, I explore the concept of the “Intelligence Supernova”—a coming explosion of synthetic and post-biological intelligence that may soon give rise to a planetary-scale mind, the Syntellect. It’s a philosophical and scientific journey that challenges you to imagine what lies beyond the Technological Singularity: digital immortality, mind-uploading, the emergence of infomorphs, and the architecture of a conscious Universe. This audiobook is for futurists, technophilosophers, and all curious minds ready to glimpse humanity’s metamorphic future. If you’re drawn to ideas like cybernetic immortality, experiential realism, or the Omega Point Cosmology, I think you’ll find this work especially meaningful.

Now available on Amazon: Audible: https://www.audible.com/pd/The-Intelligence-Supernova-Audiobook/B0FGZ3JMPM #IntelligenceSupernova #CyberneticTranshumanism #SimulationSingularity #SyntellectEmergence #SyntellectHypothesis #cybernetics #singularity #transhumanism #posthumanism #AGI #superintelligence


Amazon.com: The Intelligence Supernova: Essays on Cybernetic Transhumanism, The Simulation Singularity & The Syntellect Emergence (Audible Audio Edition): Alex M. Vikoulov, Ecstadelic Media Group, Virtual Voice: Books.