Toggle light / dark theme

Physicists have found a simple and effective way to skip over an energy level in a three-state system, potentially leading to increased quantum computational power with fewer qubits.

Nearly a century ago, Lev Landau, Clarence Zener, Ernst Stückelberg, and Ettore Majorana found a mathematical formula for the probability of jumps between two states in a system whose energy is time-dependent. Their formula has since had countless applications in various systems across physics and chemistry.

Now physicists at Aalto University’s Department of Applied Physics have shown that the jump between different states can be realized in systems with more than two via a virtual transition to an intermediate state and by a linear chirp of the drive frequency. This process can be applied to systems where it is not possible to modify the energy of the levels.

Researchers have announced results from a new search at the European X-ray Free Electron Laser (European XFEL) Facility at Hamburg for a hypothetical particle that may make up the dark matter of the universe. The experiment is described in a study published in Physical Review Letters.

This experiment looks for axions, a particle which was proposed to solve a major problem in : why neutrons, although composed of smaller charged particles called quarks, do not possess an . To explain this, it was suggested that axions, tiny and incredibly light particles, can “cancel out” this imbalance. If observed, this process would provide direct evidence for new physics beyond the Standard Model.

Additionally, axions turn out to be a natural candidate for dark matter, the mysterious substance that constitutes most of the structure of the universe.

When it comes to layered quantum materials, current understanding only scratches the surface; so demonstrates a new study from the Paul Scherrer Institute PSI. Using advanced X-ray spectroscopy at the Swiss Light Source SLS, researchers uncovered magnetic phenomena driven by unexpected interactions between the layers of a kagome ferromagnet made from iron and tin. This discovery challenges assumptions about layered alloys of common metals, providing a starting point for developing new magnetoelectric devices and rare-earth-free motors.

The research is published in the journal Nature Communications.

Patterns are everything. With , it’s not just what they’re made of but how their atoms or molecules are organized that gives rise to the exotic properties that excite researchers with their promise for future technologies.

Many objects that we normally deal with in quantum physics are only visible with special microscopes—individual molecules or atoms, for example. However, the quantum objects that Elena Redchenko works with at the Institute for Atomic and Subatomic Physics at TU Wien can even be seen with the naked eye (with a little effort): They are hundreds of micrometers in size. Still tiny by human standards but gigantic in terms of quantum physics.

Those huge quantum objects are —structures in which electric current flows at low temperatures without any resistance. In contrast to atoms, which have fixed properties, determined by nature, these artificial structures are extremely customizable and allow scientists to study different physical phenomena in a controlled manner. They can be seen as “artificial atoms,” whose physical properties can be adjusted at will.

By coupling them, a system was created that can be used to store and retrieve light—an important prerequisite for further quantum experiments. This experiment was carried out in the group of Johannes Fink at ISTA, with theoretical collaboration from Stefan Rotter at the Institute for Theoretical Physics at TU Wien. The results have now been published in the journal Physical Review Letters.

A collaborative study published in Nature reveals an innovative strategy to enhance energy storage in antiferroelectric materials.

The study, conducted by researchers from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, Tsinghua University, Songshan Lake Materials Laboratory, and the University of Wollongong, introduces the antipolar frustration strategy, which significantly improves the performance of dielectric capacitors that are crucial for high-power devices requiring fast charge and discharge rates.

Antiferroelectrics, which feature an antiparallel configuration, are emerging as promising materials for due to their phase transition from antiferroelectric to ferroelectric under an . This transition provides high polarization strength and near-zero remanent polarization, ideal for energy storage.

An international team of scientists has unveiled new insights into the dissociation dynamics of sulfur hexafluoride (SF6) under high-energy X-ray excitation. The study, conducted using advanced synchrotron radiation techniques, sheds light on the formation of neutral sulfur atoms during the decay of deep core holes in SF6. The work is published in Physical Review Letters.

Understanding the interaction of X-rays with matter is fundamental to both scientific research and practical applications, including medical and technological advancements. These interactions involve complex processes including absorption, ionization, scattering, and the decay of excited states, which emit electrons or photons.

In 1978, young scientists named Joseph Nordgren and Hans Ågren discovered an unusual spectral feature in hexafluoride (SF6) that defied explanation at the time. Their discovery was made at the Siegbahn Laboratory of Uppsala University, founded by the late Nobel Prize laureate Kai Siegbahn. Despite further investigations, the nature of this spectral anomaly remained unclear.

In a study published in Optics Express, a research group led by Prof. Fu Yuxi from Xi’an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences has developed the first room temperature holmium-doped yttrium lithium fluoride (Ho: YLF) composite thin disk laser, which can achieve high efficiency and quality continuous-wave laser output.

Lasers operating in the 2 µm spectral range are highly valued for their eye safety, high water absorption, and low atmospheric attenuation.

Conventional 2 µm lasers typically require cryogenic cooling to control thermal effects, which increases system complexity and cost, and restricts their use in compact, space-constrained, and mobile platforms. Therefore, developing high-power, room-temperature 2 µm lasers has become a vital research direction.

In a recent study, researchers developed a portable digital holographic camera system that can obtain full-color digital holograms of objects illuminated with spatially and temporally incoherent light in a single exposure. They employed a deep-learning-based denoising algorithm to suppress random noise in the image-reconstruction procedure, and succeeded in video-rate full-color digital holographic motion-picture imaging using a white LED.

The camera they developed is palm-sized, weighs less than 1 kg, operates on a table with , does not require antivibration structures, and obtains incoherent motion-picture holograms under the condition of close-up recording.

The research is published in the journal Advanced Devices & Instrumentation.

Researchers at the University of Twente have solved a long-standing problem: trapping optically-generated sound waves in a standard silicon photonic chip. This discovery, published as a featured article in APL Photonics, opens new possibilities for radio technology, quantum communication, and optical computing.

Light travels extremely fast, while sound waves move much more slowly. By manipulating the interaction between light and sound—a physical phenomenon known as stimulated Brillouin scattering (SBS)—researchers can find new ways to store and filter information in a compact chip.

This is useful in applications such as ultra-fast radio communication and quantum technology. But doing this in silicon photonic chips, one of the most important integrated photonics technologies today, was a major challenge.

“ tabindex=”0” quantum computing and secure communications. Scientists have optimized materials and processes, making these detectors more efficient than ever.

Revolutionizing Electronics with Photon Detection

Light detection plays a crucial role in modern technology, from high-speed communication to quantum computing and sensing. At the heart of these systems are photon detectors, which identify and measure individual light particles (photons). One highly effective type is the superconducting nanowire single-photon detector (SNSPD). These detectors use ultra-thin superconducting wires that instantly switch from a superconducting state to a resistive state when struck by a photon, enabling extremely fast detection.