Toggle light / dark theme

One of the greatest problems in modern physics is to reconcile the enormous difference between the energy carried by random fluctuations in the vacuum of space, and the dark energy driving the universe’s expansion.

Through new research published in The European Physical Journal Plus, researchers led by Enrico Calloni at the University of Naples Federico II, Italy, have unveiled a prototype for an ultra-precise balance instrument, which they hope could be used to measure the interaction between these vacuum fluctuations and gravitational fields. With some further improvements, the instrument could eventually enable researchers to shed new light on the enigmatic origins of .

Inside a vacuum, are constantly emerging and disappearing through random fluctuations, so that even though the space doesn’t contain any matter, it still carries a certain amount of energy. Through their research, Calloni’s team aimed to measure the influence of these fluctuations using a state-of-the-art beam balance.

Researchers from the UoC’s Center for Biochemistry at the Faculty of Medicine and the UoC CECAD Cluster of Excellence in Aging Research have discovered that an excessive immune response can be prevented by the intramembrane protease RHBDL4.

In a study now published in Nature Communications under the title “RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling,” the previously unknown regulatory mechanism is described.

The researchers discovered that the cleavage of a cargo receptor by a so-called intramembrane reduces the localization of a central immune receptor on the and thereby the risk of an overreaction of the immune system.

Guanylate binding proteins (GBP) were discovered by YSM’s John MacMicking, PhD, and colleagues over a decade ago as major organizers of cellular immune response.

In a recent study, MacMicking’s team used advanced cryo-and electron microscope technology to visualize in high resolution the way GBPs…


Yale scientists have discovered a family of immune proteins, which they describe as a “massive molecular machine,” that could affect the way our bodies fight infection.

There is reason to believe that novel physics outside the standard model may be on the horizon.

When two neutron stars merge, a short-lived, hot, dense remnant is created. This residue provides an excellent environment for the synthesis of unusual particles. For a brief while, the remnant becomes far hotter than the individual stars before congealing into a larger neutron star or, depending on the original masses, a black hole.

A new study suggests that neutron star mergers are a treasure trove for new physics signals, with implications for determining the true nature of dark matter.

Bats are an important group of mammals to understand the ecology, diversity, and transmission of associated microbes – including viruses, bacteria, and fungi.


Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.

Studies of bat-associated microbes (i.e. microorganisms detected in or isolated from bats) date back to rabies virus investigations in the early 1900s [1]. In the past two decades, following the emergence of Severe Acute Respiratory Syndrome (SARS) coronavirus (CoV) in 2003 and SARS-CoV-2 in 2019, there has been a dramatic increase in research on bat-associated microbes, including viruses, bacteria, haemosporidians and fungi [2–5]. These microbes may or may not cause disease in bats, and thus we broadly use the term ‘microbes’ rather than ‘pathogens’ throughout this paper to acknowledge that detecting microorganisms in bats is distinct from the process of determining pathogenicity [6].

Emerging nanotechnology and molecular innovations present promising strategies in combating inflammation and diabetes, aiming to transform treatment methods and improve patient outcomes significantly.


The intersection of nanotechnology and biomedicine has sparked significant advances in the treatment and understanding of both inflammatory and metabolic diseases. These advances have brought about innovative solutions to longstanding medical challenges, such as rheumatoid arthritis (RA) and type 2 diabetes mellitus (T2DM), diseases that collectively affect millions worldwide.

Summary: A recent study showcases a significant leap in the study of brain oscillations, particularly ripples, which are crucial for memory organization and are affected in disorders like epilepsy and Alzheimer’s. Researchers have developed a toolbox of AI models trained on rodent EEG data to automate and enhance the detection of these oscillations, proving their efficacy on data from non-human primates.

This breakthrough, stemming from a collaborative hackathon, offers over a hundred optimized machine learning models, including support vector machines and convolutional neural networks, freely available to the scientific community. This development opens new avenues in neurotechnology applications, especially in diagnosing and understanding neurological disorders.