Toggle light / dark theme

What if accessing knowledge, which used to require hours of analyzing handwritten scrolls or books, could be done in mere moments?

Throughout history, the way humans acquire knowledge has experienced great revolutions. The birth of writing and books altered learning, allowing ideas to be preserved and shared across generations. Then came the Internet, connecting billions of people to vast information at their fingertips.

Today, we stand at another shift: the age of AI tools, where AI doesn’t just give us answers—it provides reliable, tailored responses in seconds. We no longer need to gather and evaluate the correct information for our problems. If knowledge is now a tool everyone can hold, the real revolution starts when we use this superpower to solve problems and improve the world.

New YT video, featuring RAADFest creator, James Strole!


Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

New physics may explain discrepant values for the ionization energy of a metastable state of helium.

In the search for new physics beyond the standard model of particle physics, a significant discrepancy between theory and experiment attracts attention, especially in a simple atomic system such as helium. Recently, evidence has appeared for a 9 discrepancy in the ionization energy of the metastable triplet state of helium-4 (4He) [1, 2]. This stands out like a sore thumb in a field where theory and experiment are both highly accurate and normally in agreement. However, in assessing the validity of the discrepancy, there is always the possibility that something has been overlooked or miscalculated. Now Gloria Clausen and Frédéric Merkt of the Swiss Federal Institute of Technology (ETH) Zurich have released the results of their latest research [3] in a series of high-precision experiments [1, 4]. Their results (Fig.

Research led by Aarhus University in Denmark reports that individuals with substance use disorders experience a heightened urge to move in response to music with complex rhythms and harmonies.

Long-term use of cocaine and heroin disrupts dopamine signaling in the brain, depleting receptors and diminishing the effects of non-drug stimuli, such as music, to trigger pleasure.

Prior research has shown that music can activate dopaminergic pathways involved in reward, anticipation, and movement. Groove, the pleasurable urge to move to music, follows an inverted-U pattern in healthy listeners, peaking when rhythms fall into a sweet spot of moderate rhythmic complexity. Most people feel the strongest compulsion to move their bodies to the beat when those beats are neither too simple nor too unpredictable.

Recent technological advances have enabled the development of a wide range of increasingly sophisticated wearable and implantable devices, which can be used to monitor physiological signals or intervene with high precision in therapeutically targeted regions of the body. As these devices, particularly implantable ones, are typically designed to remain in changing biological environments for long periods of time, they should be biocompatible and capable of fixing themselves after they are damaged.

Researchers at Sungkyunkwan University, the Institute for Basic Science (IBS) and other institutes in South Korea recently devised a new method to fabricate self-healing and stretchable electronic components that could be integrated into these devices. Their approach, outlined in a paper published in Nature Electronics, enables the scalable and reconfigurable assembly of self-healing and stretchable transistors into highly performing integrated systems.

“Since the mid-2000s, the development of flexible and has significantly revolutionized research fields such as artificial electronic skin and soft implantable bioelectronics,” Donghee Son, senior author of the paper, told Tech Xplore.