Toggle light / dark theme

Scientific realists hold that we are justified in believing that our best scientific theories are true. But what if those theories are inconsistent? This video examines the argument that realists are committed to believing that there are true contradictions.

I offer private tutoring in philosophy. For details please email me: [email protected].

Support me on Patreon: / kanebaker91

Donate to my PayPal: https://paypal.me/kanebaker91

My Discord: / discord.

0:00 — Introduction.

Background and ObjectivesIn patients with acute ischemic stroke (AIS), the impact of hemorrhagic transformation (HT) after endovascular treatment (EVT) on poorer stroke outcome is well established when associated with clinical deterioration. However, the…

Just a few weeks after conception, stem cells are already orchestrating the future structure of the human brain. A new Yale-led study shows that, early in development, molecular “traffic cops” known as morphogens regulate the activation of gene programs that initiate stem cells’ differentiation into more specialized brain cells.

The Yale team found that sensitivity to these signaling morphogens can vary not only between stem cells from different donors, but between stem cells derived from the same individual.

“This is a new chapter in understanding how we develop and how development can be influenced by genomic changes between people and by within individuals,” said Flora Vaccarino, the Harris Professor in the Child Study Center at the Yale School of Medicine (YSM) and co-senior author of the research, published in the journal Cell Stem Cell.

When a fruit fly is navigating straight forward at high speed, why does it know that it’s not straying off course? Because as long as the fly moves directly forward, the visual scene shifts from front to back in a near-perfect mirror image across both retinas—generating, in other words, a symmetrical visual motion pattern. This pattern, known as “optic flow,” provides a powerful cue for detecting self-motion and maintaining direction.

Moreover, at high speeds, as soon as the fly starts deviating from its straight-ahead course even slightly, the optic flow becomes less symmetrical. But the high level of translational symmetry due to the fly’s high-speed forward motion could mask smaller binocular asymmetries caused by slight rotational inflections in its trajectory.

Therefore, detecting such “errors” and correcting them at the motor level is not trivial and must happen very quickly. Only then will the fly ensure it continues to move straight forward, as intended.

Caffeine shifts brain activity during sleep by increasing EEG complexity and reducing long-range temporal correlations, particularly in non-REM (NREM) sleep. These changes reflect a movement toward a “critical regime” of neural processing, more pronounced in younger adults.

An FDA-designated orphan drug that can target a key vulnerability in lung cancer shows promise in improving the efficacy of radiation treatments in preclinical models, according to a study by UT Southwestern Medical Center researchers. The findings, published in Science Advances, suggest a new way to enhance the response to radiotherapy by inhibiting DNA repair in lung cancer cells.

“This study was motivated by challenges faced by millions of cancer patients undergoing radiation therapy, where treatment-related toxicities limit both curative potential and the patient’s quality of life,” said principal investigator Yuanyuan Zhang, M.D., Ph.D., Assistant Professor of Radiation Oncology and a member of the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Prior research, including from the laboratory of co-investigator Ralph J. DeBerardinis, M.D., Ph.D., Professor and Director of the Eugene McDermott Center for Human Growth and Development, Professor in Children’s Medical Center Research Institute at UT Southwestern, and co-leader of the Cellular Networks in Cancer Research Program in the Simmons Cancer Center, has demonstrated that altered metabolic pathways in allow them to survive, grow, and spread. But the role of metabolism in enhancing radiation efficacy has not been thoroughly explored.

In the context of quantum physics, the term “duality” refers to transformations that link apparently distinct physical theories, often unveiling hidden symmetries. Some recent studies have been aimed at understanding and implementing duality transformations, as this could aid the study of quantum states and symmetry-protected phenomena.

Researchers at the University of Cambridge, Ghent University, Institut des Hautes Études Scientifiques and the University of Sydney recently demonstrated the implementation of dualities in symmetric 1-dimensional (1D) quantum lattice models, outlining a method to turn duality operators into unitary linear-depth quantum circuits.

Their paper, published in Physical Review Letters, is part of a larger research effort aimed at better understanding symmetries and dualities in quantum lattice models.