Toggle light / dark theme

Researchers have designed a robotic material that transforms like a living organism.

Inspired by embryos, these disk-shaped robots use magnets, motors, and light to shift between rigid and fluid states. The result? A self-healing, shape-shifting system that could change how we build and interact with materials.

Robots That Behave Like Materials

This innovation sidesteps the usual size limitations, enabling strong signal reception despite its microscopic dimensions. With high tunability and real-world transmission tests proving its viability, the nano-antenna could transform communications in extreme environments.

It turns out acetate-fed yeast produces about the same amount of vitamin B9 as those that eat sugar. Just 6 grams, or 0.4 tablespoon, of the harvested dried yeast meets the daily vitamin B9 requirement. The vitamin levels were measured by a team led by co-author Michael Rychlik at the Technical University of Munich, Germany.

For protein, the researchers found that the levels in their yeast exceed those of beef, pork, fish, and lentils. Eighty-five grams, or 6 tablespoons, of yeast provides 61% of daily protein needs, while beef, pork, fish, and lentils meet 34%, 25%, 38%, and 38% of the need, respectively. However, the yeast should be treated to rid compounds that can increase the risk of gout if consumed excessively. Even so, treated yeast still meets 41% of the daily protein requirement, comparable to traditional protein sources.

This technology aims to address several global challenges: environmental conservation, food security, and public health. Running on clean energy and CO2, the system reduces carbon emissions in food production. It uncouples land use from farming, freeing up space for conservation. Angenent also stresses that it will not outcompete farmers. Instead, the technology will help concentrate farmers to produce vegetables and crops sustainably. The team’s yeast may also help developing nations overcome food scarcity and nutritional deficiencies by delivering protein and vitamin B9.

The future is coming and much faster than we think. Let’s do an exercise of imagination, imagine, for a moment, being able to send information from one point to another without the need for cables, Wi-Fi or traditional signals, more or less like something telepathic, right? Well, that is precisely what scientists have recently achieved at the University of Oxford: teleporting data between two quantum computers. Although it may seem like science fiction or just news, the world.

Although, let’s lower the hype a little, the transmission distance of this experiment was less than two meters, but that doesn’t matter, what matters is having achieved this milestone of sharing information without the need for connections.

A groundbreaking international study, led by scientists from Ben-Gurion University of the Negev, has mapped the diverse populations of fat cells across different human fat tissues. Using advanced technology, researchers identified distinct subpopulations of fat cells with more complex functions than previously understood. They also discovered variations in how fat tissues communicate at the cellular level.

Published in Nature Genetics, these findings lay the foundation for future research aimed at advancing personalized medicine for obesity.

The research team, led by Prof. Esti Yeger-Lotem and Prof. Assaf Rudich from the Department of Clinical Biochemistry and Pharmacology at the Faculty of Health Sciences at Ben-Gurion University of the Negev, in collaboration with Prof. Naomi Habib from the Hebrew University of Jerusalem, Profs. Matthias Bluher, Antje Korner and Martin Gericke from the University of Leipzig, Germany, and Prof. Rinki Murphy from the University of Auckland, New Zealand, studied the diversity of fat cells in subcutaneous and intra-abdominal (visceral) fat tissues in humans.

Researchers are investigating fluid-robot interactions at these scales, motivated by fish that use vortices to save energy. Onboard sensing, computation, and actuation are essential for effective navigation. Despite their potential, data-driven algorithms frequently lack practical validation.

Using inertial measurements to infer background flows is a new approach that was motivated by fish’s vestibular systems’ ability to sense acceleration. This method provides an affordable substitute for intricate flow sensors in self-driving cars.

In this regard, the Caltech team developed an underwater robot that uses these flows to reduce energy consumption by “surfing” vortices to reach its destination.

The advancement can enable turbulent analysis of entire nuclear fusion reactors.


“By utilizing deep learning on GPUs, we have reduced computation time by a factor of 1,000 compared to traditional CPU-based codes,” said the joint research team.

“This advancement represents a cornerstone for digital twin technologies, enabling turbulent analysis of entire nuclear fusion reactors or replicating real Tokamaks in a virtual computing environment.”

Researchers underlined that the proposed FPL-net can solve the FPL equation in a single step, achieving results 1,000 times faster than previous methods with an error margin of just one-hundred-thousandth, demonstrating exceptional accuracy.

Summary: A new study challenges the long-held belief that the striatum is responsible for selecting actions. Researchers found that instead of making decisions, the striatum and motor cortex work together to specify movement details, such as how to reach for an object.

Using a novel “reach-to-pull” system, they recorded neural activity in mice and found that both regions were active during movement execution, not decision-making. These findings could reshape our understanding of motor control and help improve treatments for movement disorders like Parkinson’s and Huntington’s disease.