Menu

Blog

Page 1611

Jan 6, 2024

Quantitative analysis of printed nanostructured networks using high-resolution 3D FIB-SEM nanotomography

Posted by in categories: nanotechnology, transportation

It is well-reported that solution-processed nanosheets tend to restack during deposition57. We determined the degree and nature of this restacking by measuring the nanosheet length and thickness in the ink (lNS, tNS) using AFM, as well as the aggregated nanosheet dimensions in the network (lNet, tNet) post-deposition. The restacked nanosheet length and thickness were measured from network cross-sections using the Ridge Detection plugin in FIJI50,58 (Fig. 2e, inset, and Supplementary Note 9). We define the aggregation factors in nanosheet length, χl, and thickness, χt, as \({\chi }_{{{{{\rm{l}}}}}}={l}_{{{{{\rm{Net}}}}}}/{l}_{{{{{\rm{NS}}}}}}\) and \({\chi }_{{{{{\rm{t}}}}}}={t}_{{{{{\rm{Net}}}}}}/{t}_{{{{{\rm{NS}}}}}}\) respectively. Values of χl ≈ 1.5 and χt ≈ 5.6 were found for the printed LPE graphene network in Fig. 2e. This is in agreement with a value of χt ≈ 5 reported for vacuum filtered WS2 networks59, and suggests that nanosheets primarily aggregate through vertical restacking with maximised basal plane overlap.

By isolating discrete nanoplatelets and noting their orientation (Fig. 2f, inset, and Supplementary Note 10)60, the distribution of angles, φ, between each nanoplatelet’s normal vector and the out-of-plane (y) direction was calculated. The data in Fig. 2f was fit with a Cauchy-Lorentz distribution centred on φC ≈ −0.6˚, which suggests the nanosheets are primarily aligned in the plane of the film. The full width at half maximum (FWHM) of the distribution provides an estimate of the degree of alignment about φc in the network61. The FWHM of (29 ± 1)˚ for the spray cast network in Fig. 2f is comparable to a value of 21˚ for an inkjet-printed graphene film measured using AFM. In addition, we measured the Hermans orientation factor62, \(S=\left(3\left\langle {\cos }^{2}\varphi \right\rangle-1\right)/2\), to be 0.61 ± 0.07 for the network, which is consistent with partial in-plane alignment. A value of S = 1 would imply the nanosheets are perfectly aligned in the plane of the film, while S = 0 for randomly oriented nanosheets. This is in broad agreement with a value of S = 0.79 for a vacuum filtered Ti3C2Tx nanosheet network measured using wide-angle X-ray scattering (WAXS)32.

The physical properties of 2D networks are known to scale with nanosheet size63,64. Here, we use FIB-SEM-NT to systematically study the morphology of printed LPE graphene networks for various nanosheet lengths, lNS. Size-selected inks were produced using liquid cascade centrifugation65, characterised by AFM (Fig. 3a) and spray-coated into networks. Reconstructed 3D volumes for networks of two different nanosheet sizes in Fig. 3b show noticeable changes in network morphology as lNS is decreased from 1,087 to 298 nm. Analysis reveals a clear decrease in network porosity from 51% to 39% with decreasing lNS (Fig. 3c), with a corresponding reduction in the characteristic pore size, ζ \(=\sqrt{A}\), in Fig. 3D. The pore circularity data similarly exhibits a dependence on lNS (Fig. 3e), where networks of smaller nanosheets have more circular and compact pore cross-sections. This implies that printed networks comprised of smaller nanosheets are more densely packed, which has been linked to improved charge transfer in graphene films66. Alternatively, networks of larger nanosheets are more open and porous, facilitating enhanced electrolyte infiltration and mass transport. Taken together, the data in Fig. 3c-e suggests that changing the nanosheet size offers a simple means to tailor the network porosity for a target application. FIB-SEM-NT can be used to inform this by measuring pore sizes that span from a few nanometres to microns.

Jan 6, 2024

Russell Manning

Posted by in category: futurism

Tarzan, by Russ Manning

Tarzan

After graduation from high school, Russell (Russ) Manning studied at the Los Angeles Art Institute. Soon after completing his studies, Manning was sent to Japan, with the intention of being shipped to Korea. Instead of fighting in the war, Manning drew cartoons for the base newspaper and took on map-making.

Jan 6, 2024

How memories are formed in the brain: A new role for the internal compass

Posted by in category: neuroscience

Since their discovery in the 1990s, the head-direction cells in the brain have been referred to as its “internal compass.” These cells are activated when the head of an animal or human points in a certain direction, and are thought to be important for spatial orientation and navigation.

Now a team of neuroscientists at the University of Tübingen has discovered that head-direction cells in mice do more than this. They may be involved in relaying sensory and that is used to form memories of experiences, called “episodic memory.”

The research team, led by Professor Andrea Burgalossi from the Institute of Neurobiology and the Werner Reichardt Center for Integrative Neuroscience (CIN), have published their study in the journal Nature Neuroscience.

Jan 6, 2024

The Fermi Paradox: Pancosmorio Theory

Posted by in categories: biotech/medical, existential risks, media & arts

Go to https://brilliant.org/IsaacArthur/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription.\
Reaching new worlds is a difficult task, but transplanting ecosystems and civilizations to them may be even harder.\
\
Pancosmorio Paper: https://www.frontiersin.org/articles/.…\
\
Visit our Website: http://www.isaacarthur.net\
Join Nebula: https://go.nebula.tv/isaacarthur\
Support us on Patreon: / isaacarthur \
Support us on Subscribestar: https://www.subscribestar.com/isaac-a…\
Facebook Group: / 1,583,992,725,237,264 \
Reddit: / isaacarthur \
Twitter: / isaac_a_arthur on Twitter and RT our future content.\
SFIA Discord Server: / discord \
\
Credits:\
The Fermi Paradox: Pancosmorio Theory\
Episode 428; January 4, 2024\
Produced, Written \& Narrated by: Isaac Arthur\
Editor: Briana Brownell\
\
Graphics:\
Jeremy Jozwik\
Ken York\
Mafic Studios\
\
Music Courtesy of:\
Epidemic Sound http://epidemicsound.com/creator

Jan 6, 2024

Horizontal gene transfer facilitates the molecular reverse-evolution of antibiotic sensitivity in experimental populations of H. pylori

Posted by in categories: biotech/medical, evolution

The authors evolved antibiotic-resistant Helicobacter pylori in the absence of antibiotics and presence of DNA from antibiotic-sensitive strains. Horizontal gene transfer mediated the molecular reverse evolution of the antibiotic-resistance gene to the antibiotic-sensitive allele, and the authors used theoretical modelling to determine the evolutionary conditions that promote reverse evolution.

Jan 6, 2024

Freeform direct-write and rewritable photonic integrated circuits in phase-change thin films

Posted by in category: materials

In a thin film of phase-change materials, photonic circuits can be directly written, erased, and modified by a laser writer.

Jan 6, 2024

Metal-organic frameworks study unravels mechanism for capturing water from air

Posted by in categories: chemistry, physics, sustainability

Researchers from the Helmholtz-Zentrum Dresden-Rossendorf and Dresden University of Technology have unraveled the water adsorption mechanism in certain microporous materials—so-called hierarchical metal-organic frameworks (MOFs)—while probing them on the atomic scale.

Discovered only about 25 years ago, their special properties quickly led to a reputation as “miracle materials”—which, as it turned out, can even harvest water from air. The researchers describe how the material achieves this in ACS Applied Materials & Interfaces.

“These very special materials are highly porous solids made of metals or metal-oxygen clusters which are connected in a modular way by pillars of organic chemicals. This 3D arrangement leads to networks of cavities reminiscent of the pores of a kitchen sponge. It is precisely these cavities that we are interested in,” says Dr. Ahmed Attallah of HZDR´s Institute of Radiation Physics.

Jan 6, 2024

Evolution May Not Be As Random As Previously Thought

Posted by in category: evolution

New research challenges the long-held idea that evolution is always random, and could have massive implications for addressing real-world issues.

Jan 6, 2024

Mathematicians Identify the Best Versions of Iconic Shapes

Posted by in category: mathematics

Researchers are discovering the shortest knots and fattest Möbius strips, among other “optimal shapes.”

Jan 6, 2024

Sleep restores an optimal computational regime in cortical networks

Posted by in categories: computing, neuroscience

Unraveling the Enigma of Sleep: A Critical Exploration of Cortical network Dynamics.

Sleep has long been recognized as a fundamental physiological process, crucial for the well-being of both humans and animals.


Xu et al. show that waking progressively disrupts neural dynamics criticality in the visual cortex and that sleep restores it. Deviations from criticality predict future sleep/wake behavior better than prior behavior and slow-wave activity.