Toggle light / dark theme

For the first time in almost 30 years, the heaviest nucleus decaying via proton emission has been measured. The previous similar breakthrough was achieved in 1996.

The radioactive decay of atomic nuclei has been one of the keystones of nuclear physics since the beginning of nuclear research. Now the heaviest nucleus decaying via proton emission has been measured in the Accelerator Laboratory of the University of Jyväskylä, Finland. The was written as part of an international research collaboration involving experts in theoretical nuclear physics and published in Nature Communications on 29 May 2025.

“Proton emission is a rare form of radioactive decay, in which the nucleus emits a proton to take a step toward stability,” says Doctoral Researcher Henna Kokkonen from the University of Jyväskylä

Physicists are always searching for new theories to improve our understanding of the universe and resolve big unanswered questions.

But there’s a problem. How do you search for undiscovered forces or particles when you don’t know what they look like?

Take . We see signs of this mysterious cosmic phenomenon throughout the universe, but what could it possibly be made of? Whatever it is, we’re going to need new physics to understand what’s going on.

The entry of quantum computers into society is currently hindered by their sensitivity to disturbances in the environment. Researchers from Chalmers University of Technology in Sweden, and Aalto University and the University of Helsinki in Finland, now present a new type of exotic quantum material, and a method that uses magnetism to create stability.

This breakthrough can make quantum computers significantly more resilient—paving the way for them to be robust enough to tackle quantum calculations in practice.

The paper, “Topological Zero Modes and Correlation Pumping in an Engineered Kondo Lattice,” is published in Physical Review Letters.

A team at EPFL and the University of Arizona has discovered that making molecules bigger and more flexible can actually extend the life of quantum charge flow, a finding that could help shape the future of quantum technologies and chemical control. Their study is published in the Proceedings of the National Academy of Sciences.

In the emerging field of attochemistry, scientists use to trigger and steer electron motion inside . This degree of precision could one day let us design chemicals on demand. Attochemistry could also enable real-time control over how break or form, lead to the creation of highly targeted drugs, develop new materials with tailor-made properties, and improve technologies like solar energy harvesting and quantum computing.

But the big roadblock is decoherence: Electrons lose their quantum “sync” within a few femtoseconds (a millionth of a billionth of a second), especially when the molecule is large and floppy. Researchers have tried different methods to sustain coherence—using heavy atoms, freezing temperatures etc. Because quantum coherence vanishes at macroscopic scales, most approaches to sustaining coherence operate on the same assumption: larger and more flexible molecules were assumed to lose coherence more rapidly. What if that assumption is wrong?

Water is everywhere and comes in many forms: snow, sleet, hail, hoarfrost, and so on. However, despite water being so commonplace, scientists still do not fully understand the predominant physical process that occurs when water transforms from liquid to solid.

Now, in an article published in the Journal of Colloid and Interface Science, researchers from the Institute of Industrial Science, The University of Tokyo, have carried out a series of molecular-scale simulations to uncover why ice forms more easily on surfaces than in bodies of water.

While it is common knowledge that water freezes at 0°C (32°F), water does not instantly turn into ice the moment this temperature is reached. Instead, begin forming at tiny “nuclei” and spread throughout the body of water in a process called nucleation. Lower temperatures promote nucleation events and hence speed up the freezing process. Although, at the , other factors can also play a role.

Turning crude oil into everyday fuels like gasoline, diesel, and heating oil demands a huge amount of energy. In fact, this process is responsible for about 6 percent of the world’s carbon dioxide emissions. Most of that energy is spent heating the oil to separate its components based on their boiling points.

Now, in an exciting breakthrough, engineers at MIT have created a new kind of membrane that could change the game. Instead of using heat, this innovative membrane separates crude oil by filtering its components based on their molecular size.

“This is a whole new way of envisioning a separation process. Instead of boiling mixtures to purify them, why not separate components based on shape and size? The key innovation is that the filters we developed can separate very small molecules at an atomistic length scale,” says Zachary P. Smith, an associate professor of chemical engineering at MIT and the senior author of the new study.

Experiments at BESSY II show that during electrolysis, the structure breaks down into ultrathin nickel sheets, exposing the active catalytic centers to the electrolyte. Hydrogen can be produced through the electrolysis of water. When the electricity for this process comes from renewable sources.