Toggle light / dark theme

Recent studies have revealed that electrons passing through chiral molecules exhibit significant spin polarization—a phenomenon known as chirality-induced spin selectivity. This effect stems from a nontrivial coupling between electron motion and spin within chiral structures, yet quantifying it remains challenging.

To address this, researchers at the Institute for Molecular Science (IMS) /SOKENDAI investigated an organic superconductor with chiral symmetry. They focused on nonreciprocity related to and observed an exceptionally large nonreciprocal transport in the , far exceeding theoretical predictions. Remarkably, this was found in an with inherently weak spin-orbit coupling, suggesting that chirality significantly enhances charge current-spin coupling with inducing mixed spin-triplet Cooper pairs.

The work is published in the journal Physical Review Research.

Opaque materials can transmit light when excited by a high-intensity laser beam. This process, known as optical bleaching, induces a nonlinear effect that temporarily alters the properties of a material. Remarkably, when the laser is switched on and off at ultrahigh speeds, the effect can be dynamically controlled, opening new possibilities for advanced optical technologies.

Multicolored optical switching is an important phenomenon with potential applications in fields such as telecommunications and optical computing. However, most materials typically exhibit single-color optical nonlinearity under intense laser illumination, limiting their use in systems requiring multicolor or multiband switching capabilities. Currently, most optical switches are based on , which require an electric voltage or current to operate, resulting in slow response times.

To address this gap, a group of researchers, led by Professor Junjun Jia from the Faculty of Science and Engineering at Waseda University, Japan, in collaboration with Professor Hui Ye and Dr. Hossam A. Almossalami from the College of Optical Science and Engineering at Zhejiang University, China, Professor Naoomi Yamada from the Department of Applied Chemistry at Chubu University, Japan, and Dr. Takashi Yagi from the National Institute of Advanced Industrial Science and Technology, Japan, investigated the multivalley optical switching phenomenon in germanium (Ge) films.

Physicists at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have created a compact laser that emits extremely bright, short pulses of light in a useful but difficult-to-achieve wavelength range, packing the performance of larger photonic devices onto a single chip.

Published in Nature, the research is the first demonstration of an on-chip, picosecond, mid-infrared laser pulse generator that requires no external components to operate.

The device can make what’s called an , a spectrum of light consisting of equally spaced frequency lines (like a comb), used today in precision measurements. The new laser chip could one day speed the creation of highly sensitive, broad-spectrum gas sensors for environmental monitoring, or new types of spectroscopy tools for medical imaging.

Euclid’s first data release offers a breathtaking glimpse into our universe, revealing over 26 million galaxies and showcasing the telescope’s unprecedented precision in the visible and infrared. Powered by advanced optics and massive data processing infrastructure, the mission is already revolut

Scientists apply principles of math and physics to unravel the mystery of how the endoplasmic reticulum, an organelle vital to cellular life, constantly reshapes and reorganizes itself. As a second-year Ph.D. student and physicist, Zuben Scott hadn’t thought much about the endoplasmic reticulum s

Cybersecurity researchers have unearthed a new controller component associated with a known backdoor called BPFDoor as part of cyber attacks targeting telecommunications, finance, and retail sectors in South Korea, Hong Kong, Myanmar, Malaysia, and Egypt in 2024.

“The controller could open a reverse shell,” Trend Micro researcher Fernando Mercês said in a technical report published earlier in the week. “This could allow lateral movement, enabling attackers to enter deeper into compromised networks, allowing them to control more systems or gain access to sensitive data.

The campaign has been attributed with medium confidence to a threat group it tracks as Earth Bluecrow, which is also known as DecisiveArchitect, Red Dev 18, and Red Menshen. The lower confidence level boils down to the fact that the BPFDoor malware source code was leaked in 2022, meaning it could also have bee adopted by other hacking groups.