Menu

Blog

Page 1593

Oct 2, 2023

There are $10 trillion dollars of productivity to be reaped from AI, says IBM

Posted by in category: robotics/AI

Paul Burton, general manager of IBM Asia Pacific, “if you leverage AI correctly, there’s probably $10 trillion of productivity that will be reaped by companies and governments over the next 10 years.”

Oct 2, 2023

AI could help predict pancreatic cancer, study finds

Posted by in categories: biotech/medical, internet, robotics/AI

A new study finds artificial intelligence could help predict pancreatic cancer. Dr. Chris Sander, one of the co-authors of the study, joined CBS News to talk about the findings.

#news #ai #cancer.

Continue reading “AI could help predict pancreatic cancer, study finds” »

Oct 2, 2023

Instant evolution: AI designs new robot from scratch in seconds

Posted by in categories: information science, robotics/AI, supercomputing

A team led by Northwestern University researchers has developed the first artificial intelligence (AI) to date that can intelligently design robots from scratch.

To test the new AI, the researchers gave the system a simple prompt: Design a robot that can walk across a . While it took nature billions of years to evolve the first walking species, the compressed to lightning speed—designing a successfully walking robot in mere seconds.

But the AI program is not just fast. It also runs on a lightweight and designs wholly novel structures from scratch. This stands in sharp contrast to other AI systems, which often require energy-hungry supercomputers and colossally large datasets. And even after crunching all that data, those systems are tethered to the constraints of human creativity—only mimicking humans’ past works without an ability to generate new ideas.

Oct 2, 2023

Simulations reveal the atomic-scale story of qubits

Posted by in categories: computing, engineering, particle physics, quantum physics

Researchers led by Giulia Galli at University of Chicago’s Pritzker School of Molecular Engineering report a computational study that predicts the conditions to create specific spin defects in silicon carbide. Their findings, published online in Nature Communications, represent an important step towards identifying fabrication parameters for spin defects useful for quantum technologies.

Electronic spin defects in semiconductors and insulators are rich platforms for , sensing, and communication applications. Defects are impurities and/or misplaced atoms in a solid and the electrons associated with these carry a spin. This quantum mechanical property can be used to provide a controllable qubit, the basic unit of operation in quantum technologies.

Yet the synthesis of these spin defects, typically achieved experimentally by implantation and annealing processes, is not yet well understood, and importantly, cannot yet be fully optimized. In —an attractive host material for spin qubits due to its industrial availability—different experiments have so far yielded different recommendations and outcomes for creating the desired spin defects.

Oct 2, 2023

Scientists discover a durable but sensitive material for high energy X-ray detection

Posted by in categories: biotech/medical, materials

X-ray technology plays a vital role in medicine and scientific research, providing non-invasive medical imaging and insight into materials. Recent advancements in X-ray technology enable brighter, more intense beams and imaging of increasingly intricate systems in real-world conditions, like the insides of operating batteries.

To support these advancements, scientists are working to develop X-ray materials that can withstand bright, high-energy X-rays—especially those from large X-ray synchrotrons—while maintaining sensitivity and cost-effectiveness.

A team of scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and their colleagues have demonstrated exceptional performance of a new material for detecting high energy X-ray scattering patterns. With excellent endurance under ultra-high X-ray flux and relatively low cost, the detector material may find wide application in synchrotron-based X-ray research.

Oct 2, 2023

Physicists coax superconductivity and more from quasicrystals

Posted by in categories: materials, physics

In research that could jumpstart interest into an enigmatic class of materials known as quasicrystals, MIT scientists and colleagues have discovered a relatively simple, flexible way to create new atomically thin versions that can be tuned for important phenomena. In work reported in Nature they describe doing just that to make the materials exhibit superconductivity and more.

The research introduces a new platform for not only learning more about quasicrystals, but also exploring exotic phenomena that can be hard to study but could lead to important applications and new physics. For example, a better understanding of superconductivity, in which electrons pass through a material with no resistance, could allow much more efficient electronic devices.

The work brings together two previously unconnected fields: quasicrystals and twistronics. The latter was pioneered at MIT only about five years ago by Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT and corresponding author of the paper.

Oct 2, 2023

Study sheds new light on how soil viruses behave and interact with bacteria

Posted by in categories: evolution, space

Viruses in soil may not be as destructive to bacteria as once thought and could instead act like lawnmowers, culling older cells and giving space for new growth, according to research out of the University of California, Davis, published Sept. 28 in the journal Nature Ecology and Evolution.

How affect ecosystems, including bacteria, is challenging to untangle because they are complex and change over time and space. But the first annual rain on Mediterranean ecosystems, such as those in California, offers a kind of reset, triggering activity that can be observed.

Scientists took from four California grasslands, brought it back to their lab and simulated precipitation by watering the dry samples, which grew microorganisms and viruses. They tracked changes over 10 days.

Oct 2, 2023

In Neuroscience Flap, Science Media Tackle “Pseudoscience” Claim

Posted by in categories: neuroscience, science

The question comes down to this: If materialism collapses, what will science look like? Will the people who are interested in science today continue to be so? Will the same people continue to dominate?

One thing for sure: A lot of things will come tumbling out in the wash.

*In my experience, the abortion issue has mostly been Catholic and other grannies vs. abortionists. If, like David Chalmers, you are inclined to take bets, bet on the grannies.

Oct 2, 2023

MIT’s New Fluxonium Qubit Circuit Enables Quantum Operations With Unprecedented Accuracy

Posted by in categories: quantum physics, supercomputing

The advance brings quantum error correction a step closer to reality.

In the future, quantum computers may be able to solve problems that are far too complex for today’s most powerful supercomputers. To realize this promise, quantum versions of error correction codes must be able to account for computational errors faster than they occur.

However, today’s quantum computers are not yet robust enough to realize such error correction at commercially relevant scales.

Oct 2, 2023

Cell biologists identify new organelle present in mammalian cells made of rings of DNA

Posted by in categories: biotech/medical, life extension

Researchers at ETH Zurich recently identified a previously unknown compartment in mammalian cells. They have named it the exclusome. It is made up of DNA rings known as plasmids. The researchers have published details of their discovery in the journal Molecular Biology of the Cell.

The new compartment is in the cell plasma; it is previously uncharacterized in the literature. It is exceptional because eukaryotic cells (cells with nuclei) usually keep most of their DNA in the , where it is organized into chromosomes.

Some of the plasmids that end up in the exclusome originate from outside the cell, while others—known as telomeric rings—come from the capped ends of chromosomes, the telomeres. Particularly in certain , the ones from the telomeres are regularly pinched off and joined together to form rings. However, these don’t contain the blueprints for proteins.