Toggle light / dark theme

Joint research demonstrating the ability to readout superconducting qubits with an optical transducer was published in Nature Physics.

Quantum computing has the potential to drive transformative breakthroughs in fields such as advanced material design, artificial intelligence, and drug discovery. Of the quantum computing modalities, superconducting qubits are a leading platform towards realizing a practical quantum computer given their fast gate speeds and ability to leverage existing semiconductor industry manufacturing techniques.

However, fault-tolerant quantum computing will likely require 10,000 to a million physical qubits. The sheer amount of wiring, amplifiers and microwave components required to operate such large numbers of qubits far exceeds the capacity of modern-day dilution refrigerators, a core component of a superconducting quantum computing system, in terms of both space and passive heat load.

Plasma arc cutting (PAC) is a thermal cutting technique widely used in manufacturing applications such as shipbuilding, aerospace, fabrication, nuclear plants decommissioning, construction industry, and the automotive industry. In this process, a jet of plasma or ionized gas is ejected at high speeds, which melts and subsequently removes unwanted parts of materials from electrically conductive workpieces such as metals.

The plasma jet is typically produced in two steps: pressuring a gas through a small nozzle hole and generating an electric arc via power supply. Remarkably, the introduced arc ionizes the gas coming out of the nozzle, which in turn generates plasma with extremely high temperatures. This enables the plasma jet to easily, quickly, and precisely slice different metals and alloys.

The quality of workpieces cut using PAC depends on various factors: kind of plasma gas and its pressure, nozzle hole shape and size, arc current and voltage, cutting speed, and distance between the torch and the workpiece. While most of these factors are well understood in the context of PAC, the impact of gas flow dynamics on cut quality remains less clearly known. This is mainly due to challenges in visualization of the flow dynamics.

In a groundbreaking study, scientists developed new ways to control atom collisions using optical tweezers, offering insights that could advance quantum computing and molecular science. By manipulating light frequencies and atomic energy levels, they mapped out how specific atomic characteristics influence collision outcomes, paving the way for more precise quantum manipulation.

Researchers have developed a high-resolution embedded 3D-printing technique that enables the fabrication of ultra-fine fibers, mimicking nature’s structures. Using a solvent exchange process, they achieved unprecedented resolutions of 1.5 microns, unlocking new possibilities for bioinspired materials and advanced engineering applications.

Researchers have been exploring new methods to produce and replicate the diverse and valuable features found in nature. Fine hairs and fibers, which are ubiquitous in the natural world, serve various purposes, from sensory functions to contributing to the unique consistency of hagfish slime.

MechSE Professors Sameh Tawfick and Randy Ewoldt, along with doctoral candidate M. Tanver Hossain and external collaborators, have addressed this need using their advanced embedded 3D-printing technique, recently published in Nature Communications.

KIT researchers lay the foundation for new materials and chemical processes by synthesizing an unusual molecule.

Researchers at the Karlsruhe Institute of Technology (KIT) have successfully synthesized and stabilized a Bi₅⁻ ring—a molecule composed of five bismuth atoms—within a metal complex. This achievement fills a key gap in chemical research and opens new possibilities for applications in materials science, catalysis, and electronics. The study has been published in Nature Chemistry.

“By synthesizing the Bi5–ring, we’ve answered a long-standing question of basic research. In the future, this molecule could play an important role in the development of new materials and chemical processes,” said Professor Stefanie Dehnen from KIT’s Institute for Inorganic Chemistry, where she heads the cluster-based materials research group.

MIT neuroscientists have made a breakthrough in treating fragile X syndrome by leveraging a novel neurotransmitter signaling pathway. By targeting a specific subunit of NMDA receptors, they successfully reduced excessive protein synthesis in the brain, a hallmark of the disorder. Their approach, tested in fragile X model mice, not only corrected molecular imbalances but also improved synaptic function and reduced disease symptoms.

A breathtaking new image of the RCW 38 star cluster showcases a cosmic nursery bursting with color, light, and energy.

Located 5,500 light-years away, this region teems with young, newly formed stars and swirling clouds of glowing gas. The European Southern Observatory’s powerful VISTA telescope cuts through the dust to reveal hidden celestial wonders, offering astronomers a rare glimpse into the chaotic beauty of star birth.

A stunning glimpse of RCW 38.

A new adaptive optics technology is set to transform gravitational-wave detection, allowing LIGO

LIGO, or the Laser Interferometer Gravitational-Wave Observatory, is a large-scale physics experiment and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. There are two LIGO observatories in the United States—one in Hanford, Washington, and the other in Livingston, Louisiana. These observatories use laser interferometry to measure the minute ripples in spacetime caused by passing gravitational waves from cosmic events, such as the collisions of black holes or neutron stars.

A collaborative team of researchers from the Max Planck Institute for Structure and Dynamics of Matter (MPSD), Nanjing University, Songshan Lake Materials Laboratory (SLAB), and international partners has introduced a new method to regulate exotic electronic states in two-dimensional materials.

Building on the foundations laid by their previous work on twisted van der Waals materials, the team of physicists has now discovered a novel way to manipulate correlated electronic states in twisted double bilayer tungsten diselenide (TDB-WSe₂). This breakthrough offers new possibilities for developing advanced quantum materials and devices.

By precisely twisting two bilayers of WSe₂ near a 60-degree angle and applying a perpendicular electric field, the researchers have achieved control over the interaction between two distinct electronic bands, known as the K-valley and Γ-valley bands. This tuning has led to the observation of a “valley charge-transfer insulator”—an exotic state where electron movement is highly correlated, and electrical conductivity is suppressed.

Intel’s 18A is said to report an SRAM density equal to that of TSMC’s N2 process, signaling a massive breakthrough for the IFS and its semiconductor ambitions.

Intel’s 18A Process Is a “Special” One, Credits To Implementations Such As BSPDN Along With Years of R&D Behind It

Well, it seems like now might be the time to be bullish on the future of Intel’s chip plans, since the latest reports are clearly indicating that the momentum is shifting towards Team Blue. Following the political backing of the Trump administration, it is now disclosed via ISSCC sessions (via Ian Cutress) that both TSMC and Intel’s cutting-edge processes are rivaling each other in SRAM densities, showing that the gap has been narrowed down significantly, at least in one of the important aspects.