Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Bilu Huang — CSO, Fuzhuang Therapeutics — Conquering Aging Via TRCS

Conquering aging via TRCS — the telomere DNA AND ribosomal DNA co-regulation model for cell senescence — bilu huang — CSO, fuzhuang therapeutics.


Bilu Huang (https://biluhuang.com/) is a visionary scientist dedicated to finding solutions to some of the most pressing challenges facing humanity. His interdisciplinary work spans multiple fields, including biological aging, dinosaur extinction theories, geoengineering for carbon removal, and controlled nuclear fusion technology.

Born in Sanming City, Fujian Province, Huang is an independent researcher whose knowledge is entirely self-taught. Driven by curiosity and a relentless pursuit of scientific exploration, he has achieved numerous research results through his dedication and passion for science.

As a talented theoretical gerontologist, he proposed the Telomere DNA and ribosomal DNA co-regulation model for cell senescence (TRCS) and he is now using this latest theory to develop biotechnology to rejuvenate cells which will be used to completely cure various age-related degenerative diseases and greatly extend human life at Fuzhuang Therapeutics (https://lab.fuzhuangtx.com/en/).

#Aging #Longevity #BiluHuang #FuzhuangTherapeutics #TelomereDNAAndRibosomalDNACoRegulationModelForCell #Senescence #TRCS #DinosaurExtinctionResearch #CarbonRemovalTechnology #ControlledNuclearFusion #TelomereDNA #RibosomalDNA #CellularAging #GeneticProgram #Telomere #P53

MIT engineers develop a magnetic transistor for more energy-efficient electronics

Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.

MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity.

The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.

Breakthrough: Quantum Entanglement Achieved Between The Hearts of Two Atoms

Quantum entanglement – once dismissed by Albert Einstein as “spooky action at a distance” – has long captured the public imagination and puzzled even seasoned scientists.

But for today’s quantum practitioners, the reality is rather more mundane: entanglement is a kind of connection between particles that is the quintessential feature of quantum computers.

Though these devices are still in their infancy, entanglement is what will allow them to do things classical computers cannot, such as better simulating natural quantum systems like molecules, pharmaceuticals, or catalysts.

Next-generation nanoengineered switches can cut heat loss in electronics

Electronic devices lose energy as heat due to the movement of electrons. Now, a breakthrough in nanoengineering has produced a new kind of switch that matches the performance of the best traditional designs while pushing beyond the power-consumption limits of modern electronics.

Researchers from the University of Michigan have achieved what scientists have been trying to execute for a long time: designing electronics that harness excitons—pairs of an electron and a corresponding hole (a missing electron) bound together forming a charge-neutral particle—instead of electrons.

The newly designed nanoengineered optoexcitonics (NEO) device featured a tungsten diselenide (WSe2) monolayer on a tapered silicon dioxide (SiO2) nanoridge. The switch achieved a 66% reduction in losses compared to traditional switches while surpassing an on–off ratio of 19 dB at room temperature, a performance that rivals the best electronic switches available on the market.

/* */