Toggle light / dark theme

Chemical reactions are complex mechanisms. Many different dynamic processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often, the strongly coupled electron and nuclear dynamics induce radiation-less relaxation processes known as conical intersections. Such dynamics, which are at the basis of many biological and chemical relevant functions, are extremely difficult to detect experimentally.

Resolve specializes in detecting “soft” X-rays, a form of light with energies 5,000 times greater than visible light. This allows it to pierce through the veil and observe the universe’s most violent and energetic phenomena: supermassive black holes, sprawling galaxy clusters, and the fiery aftermath of supernovae.

However, these 36 pixels are far from ordinary. They function as a “microcalorimeter spectrometer,” explains Brian Williams, NASA’s XRISM project scientist. Each pixel acts like a miniature thermometer, meticulously measuring the temperature change caused by an incoming X-ray. This seemingly simple act reveals a wealth of information.