Toggle light / dark theme

DNA nanostructures can perform some of the complex robotic fabrication process for manufacturing and self-replication. Building things and performing work with nanorobots has been a major technical and scientific goal. This has been done and published in the peer reviewed journal Science. Nadrian C. “Ned” Seeman (December 16, 1945 – November 16, 2021) was an American nanotechnologist and crystallographer known for inventing the field of DNA nanotechnology. He contributed enough to this work published in 2023 to be listed as a co-author.

Seeman’s laboratory published the synthesis of the first three-dimensional nanoscale object, a cube made of DNA, in 1991. This work won the 1995 Feynman Prize in Nanotechnology. The concept of the dissimilar double DNA crossover introduced by Seeman, was important stepping stone towards the development of DNA origami. The goal of demonstrating designed three-dimensional DNA crystals was achieved by Seeman in 2009, nearly thirty years after his original elucidation of the idea.

The concepts of DNA nanotechnology later found further applications in DNA computing, DNA nanorobotics, and self-assembly of nanoelectronics. He shared the Kavli Prize in Nanoscience 2010 with Donald Eigler for their development of unprecedented methods to control matter on the nanoscale.

Meta CEO Mark Zuckerberg seemed to take a hit at Apple’s Vision Pro in Meta’s first-quarter earnings call on Wednesday.

Zuckerberg said he didn’t think augmented reality glasses would make it in the mainstream market until it had “full holographic displays.” The comment appears to show his skepticism of the potential success of a product like Apple’s Vision Pro.

A team of scientists have developed a new FDM 3D printer that can automatically create parameters for unknown materials.

Material presets for mass-manufactured polymers can be found on most 3D printers. However, the 3D printing parameters for sustainable and recycled materials need to be manually adjusted. This trial and error process can be frustrating and time-consuming, limiting the adoption of environmentally friendly filaments.

Experts from MIT’s Center for Bits and Atoms (CBA), the U.S. National Institute of Standards and Technology (NIST), and Greece’s National Center for Scientific Research (Demokritos) are working to change this.