Toggle light / dark theme

The wave-particle duality was demonstrated not only with electrons, but when it came to atoms and even molecules, things got complicated. Electrons are 1,800 times lighter than the lightest atom (something discovered by Thomson’s father J.J. Thomson) so they can more easily diffract through the lattice of a crystal.

Atom diffraction had so far been seen in reflection. The atoms were bounced off a surface that was etched to have a grating. The lines don’t need to be as thin as 10,000 times smaller than a hair, like the most important machine you’ve never heard of makes them. Grids with much larger lines, which could have been made in the 1930s, were enough to showcase this phenomenon. However, researchers haven’t been able to show the diffraction of atoms through a crystal until now.

In a yet-to-be-peer-reviewed paper, Carina Kanitz and colleagues from the Institute of Quantum Technologies and the University of Vienna demonstrated diffractions of hydrogen and helium atoms using a one-atom-thick sheet of graphene. The atoms are shot perpendicularly at the graphene sheet at high energy. This should damage the crystal but it doesn’t, and it’s the secret of this successful experiment.

Dust storms on Mars could one day pose dangers to human astronauts, damaging equipment and burying solar panels. New research gets closer to predicting when extreme weather might erupt on the Red Planet.

Today’s weather report on Mars: Windy with a chance of catastrophic dust storms blotting out the sky.

In a new study, planetary scientists at the University of Colorado Boulder have begun to unravel the factors that kick off major dust storms on Mars — weather events that sometimes engulf the entire planet in swirling grit. The team discovered that relatively warm and sunny days may help to trigger them.

New research demonstrates a brand-new architecture for scaling up superconducting quantum devices. Researchers at the UChicago Pritzker School of Molecular Engineering (UChicago PME) have realized a new design for a superconducting quantum processor, aiming at a potential architecture for the large-scale, durable devices the quantum revolution demands.

Unlike the typical quantum chip design that lays the information-processing qubits onto a 2-D grid, the team from the Cleland Lab has designed a modular quantum processor comprising a reconfigurable router as a central hub. This enables any two qubits to connect and entangle, where in the older system, qubits can only talk to the qubits physically nearest to them.

“A quantum computer won’t necessarily compete with a classical computer in things like memory size or CPU size,” said UChicago PME Prof. Andrew Cleland. “Instead, they take advantage of a fundamentally different scaling: Doubling a classical computer’s computational power requires twice as big a CPU, or twice the clock speed. Doubling a quantum computer only requires one additional qubit.”

Scientists have made a game-changing discovery suggesting that marine bacteria in ocean waters may be able to store carbon, potentially giving the world another promising solution as we aim to bring Earth’s climate back into balance.

According to a media release by UC Irvine News, a team from the University of California, Irvine, studied concentrations of carboxyl-rich alicyclic molecules, or CRAM, in Baffin Bay, situated between Canada and Greenland.

The findings, published in the journal Nature Communications, have upended what researchers thought they knew, with some molecules stored in deep ocean waters while others quickly rise.

Scientists recreated molecular switches that regulate biological timing, aiding nanotechnology and explaining evolutionary advantages.

Living organisms monitor time – and react to it – in many different ways, from detecting light and sound in microseconds to responding physiologically in pre-programmed ways, via their daily sleep cycle, monthly menstrual cycle, or to changes in the seasons.

These time-sensitive reactions are enabled by molecular switches or nanomachines that function as precise molecular timers, programmed to activate or deactivate in response to environmental cues and time intervals.

MicroAlgo Inc. has announced the development of a quantum algorithm it claims significantly enhances the efficiency and accuracy of quantum computing operations. According to a company press release, this advance focuses on implementing a FULL adder operation — an essential arithmetic unit — using CPU registers in quantum gate computers.

The company says this achievement could open new pathways for the design and practical application of quantum gate computing systems. However, it’s important to point out that the company did not cite supporting research papers or third-party validations in the announcement.

Quantum gate computers operate by applying quantum gates to qubits, which are the basic units of quantum information. Unlike classical bits that represent data as either “0” or “1,” qubits can exist in a superposition of probabilistic states, theoretically enabling quantum systems to process specific tasks more efficiently than classical computers. According to the press release, MicroAlgo’s innovation leverages quantum gates and the properties of qubits, including superposition and entanglement, to simulate and perform FULL adder operations.

A team of materials scientists, physicists, mechanical engineers, and molecular physiologists at Stanford University have developed a nanoparticle technique that can be used to measure force dynamics inside a living creature, such as Caenorhabditis elegans worms biting their food.

In their paper published in the journal Nature, the group describes how they used to excite luminescent nanocrystals in a way that allowed the energy levels of cells inside a C. elegans worm to be measured.

Andries Meijerink, with Utrecht University, has published a News & Views piece in the same journal issue, outlining the work done by the team in California.

Birds are the undisputed champions of epic travel, but they are not the only long-haul fliers. A handful of bats are known to travel thousands of kilometers in continental migrations across North America, Europe, and Africa. The behavior is rare and difficult to observe, which is why long-distance bat migration has remained an enigma.

Now, scientists from the Max Planck Institute of Animal Behavior (MPI-AB) have studied 71 common noctule bats on their spring migration across the European continent, providing a leap in understanding this mysterious behavior. Ultra-lightweight, attached to bats uncovered a strategy used by the tiny mammals for travel: they surf the warm fronts of storms to fly further with less energy. The study is published in Science.

“The is amazing,” says first author Edward Hurme, a postdoctoral researcher at MPI-AB and the Cluster of Excellence Collective Behavior at the University of Konstanz. “We don’t just see the path that bats took, we also see what they experienced in the environment as they migrated. It’s this context that gives us insight into the crucial decisions that bats made during their costly and dangerous journeys.”

To overcome that limitation, MIT researchers have developed a computational technique that allows large language models to predict antibody structures more accurately. Their work could enable researchers to sift through millions of possible antibodies to identify those that could be used to treat SARS-CoV-2 and other infectious diseases.

The findings are published in the journal Proceedings of the National Academy of Sciences.