Toggle light / dark theme

You may have heard of the fantastic-sounding “dark side of the genome.” This poorly studied fraction of DNA, known as heterochromatin, makes up around half of your genetic material, and scientists are now starting to unravel its role in your cells.

For more than 50 years, scientists have puzzled over the genetic material contained in this “dark DNA.” But there’s a growing body of evidence showing that its proper functioning is critical for maintaining cells in a healthy state. Heterochromatin contains tens of thousands of units of dangerous DNA, known as “” (or TEs). TEs remain silently “buried” in heterochromatin in normal cells—but under many pathological conditions they can “wake up” and occasionally even “jump” into our regular genetic code.

And if that change benefits a cell? How wonderful! Transposable elements have been co-opted for new purposes through evolutionary history—for instance the RAG genes in and the genes required for driving the development of the placenta and mammalian evolution have been derived from TEs.

Chewing gum releases hundreds of tiny plastic pieces straight into people’s mouths, researchers said on Tuesday, also warning of the pollution created by the rubber-based sweet.

The small study comes as researchers have increasingly been finding small shards of plastic called microplastics throughout the world, from the tops of mountains to the bottom of the ocean – and even in the air we breathe.

They have also discovered microplastics riddled throughout human bodies – including inside our lungs, blood and brains – sparking fears about the potential effect this could be having on health.

Natural biological tissues, like human skin, possess a unique combination of properties that synthetic materials struggle to replicate. Skin is strong yet flexible and, most impressively, capable of self-repair. Until now, scientists have only been able to replicate either the stiffness of biological tissues or their self-healing ability—but never both at once.

Hydrogels have many advantages, such as biocompatibility, nutrient transport, and ionic conductivity. These features make them promising materials for biomedical applications, but their mechanical limitations have kept them from reaching their full potential.

Most self-healing hydrogels are too soft, with a Young’s modulus below 100 kilopascals (kPa). Others that achieve stiffness above 100 megapascals (MPa) typically lose their ability to heal.

Mature or nearly mature fruits of Piper longum are used as a spice, valued for their commercial and industrial applications, as well as in traditional Chinese medicine for their multiple effects, such as dispelling cold and relieving pain.

Given their long history of medicinal use, the fruits of P. longum present an opportunity to explore their therapeutic constituents. However, the chemical components of traditional Chinese medicines are often complex, making the efficient discovery of novel active compounds a challenging task in natural product research.

To address this challenge, a research team led by Prof. Haji Akber Aisa from the Xinjiang Technical Institute of Physics & Chemistry of the Chinese Academy of Sciences isolated 12 dimeric amide alkaloid enantiomers with anti-inflammatory and antidiabetic effects from P. longum fruits using a molecular network-based dereplication strategy. This study was published in the Journal of Agricultural and Food Chemistry.

The large-scale renewable energy storage sphere is set to get a massive boost with the development of a 1 GWh molten salt storage system, which will be capable of powering approximately 100,000 homes for 10 hours with an efficiency of up to 90%.

This breakthrough is the result of a collaboration between Danish thermal energy storage developer Hyme Energy and Swiss fluid engineering specialist Sulzer.

More than 80 years ago, Erwin Schrödinger, a theoretical physicist steeped in the philosophy of Schopenhauer and the Upanishads, delivered a series of public lectures at Trinity College, Dublin, which eventually came to be published in 1944 under the title “What is Life?”

Now, in the 2025 International Year of Quantum Science and Technology, Philip Kurian, a and founding director of the Quantum Biology Laboratory (QBL) at Howard University in Washington, D.C., has used the laws of quantum mechanics, which Schrödinger postulated, and the QBL’s discovery of cytoskeletal filaments exhibiting quantum optical features, to set a drastically revised upper bound on the computational capacity of carbon-based life in the entire history of Earth.

Published in Science Advances, Kurian’s latest work conjectures a relationship between this information-processing limit and that of all matter in the observable universe.